Какие бывают стандарты Wi-Fi и какой для смартфона лучше.

Популярность Wi-Fi-соединения растёт с каждым днём, поскольку огромными темпами увеличивается спрос на этот вид сети. Смартфоны, планшеты, ноутбуки, моноблоки, телевизоры, компьютеры - вся наша техника поддерживает беспроводное подключение к интернету, без которого уже невозможно представить жизнь современного человека.

Технологии передачи данных развиваются вместе с выпуском новой техники

Для того чтобы подобрать подходящую для ваших нужд сеть, необходимо узнать про все стандарты Wi-Fi, существующие на сегодняшний день. Компанией Wi-Fi Alliance разработано более двадцати технологий подключения, четыре из которых сегодня наиболее востребованы: 802.11b, 802.11a, 802.11g и 802.11n. Самым последним открытием производителя стала модификация 802.11ас, показатели которой в несколько раз превышают характеристики современных адаптеров.

Является старшей сертифицированной технологией беспроводного подключения и отличается общей доступностью. Устройство обладает весьма скромными параметрами:

  • Скорость передачи информации - 11 Мбит/с;
  • Диапазон частот - 2,4 ГГц;
  • Радиус действия (при отсутствии объёмных перегородок) - до 50 метров.

Следует отметить, что этот стандарт имеет слабую помехоустойчивость и низкую пропускную способность. Поэтому, несмотря на привлекательную цену этого Wi-Fi-подключения, его техническая составляющая значительно отстаёт от более современных моделей.

Стандарт 802.11a

Эта технология представляет собой улучшенную версию предыдущего стандарта. Разработчики сделали упор на пропускную способность устройства и его тактовую частоту. Благодаря таким изменениям, в этой модификации отсутствует влияние других устройств на качество сигнала сети.

  • Диапазон частот - 5 ГГц;
  • Радиус действия - до 30 метров.

Однако все преимущества стандарта 802.11a компенсированы в равной степени его недостатками: уменьшенным радиусом подключения и высокой (по сравнению с 802.11b) ценой.

Стандарт 802.11g

Обновлённая модификация выходит в лидеры сегодняшних стандартов беспроводных сетей, поскольку поддерживает работу с распространённой технологией 802.11b и, в отличие от неё, имеет достаточно высокую скорость соединения.

  • Скорость передачи информации - 54 Мбит/с;
  • Диапазон частот - 2,4 ГГц;
  • Радиус действия - до 50 метров.

Как вы могли заметить, тактовая частота снизилась до 2,4 ГГц, но зона покрытия сети вернулась до прежних показателей, характерных для 802.11b. Кроме того, цена на адаптер стала более доступной, что является весомым преимуществом при выборе оборудования.

Стандарт 802.11n

Несмотря на то, что эта модификация уже давно появилась на рынке и обладает внушительными параметрами, производители до сих пор работают над её улучшением. В связи с тем, что она несовместима с предыдущими стандартами, её популярность невелика.

  • Скорость передачи информации - теоретически до 480 Мбит/с, а на практике выходит вполовину меньше;
  • Диапазон частот - 2,4 или 5 ГГц;
  • Радиус действия - до 100 метров.

Так как этот стандарт до сих пор развивается, у него есть характерные особенности: он может конфликтовать с оборудованием, поддерживающим 802.11n, только потому, что производители устройств разные.

Другие стандарты

Кроме популярных технологий, производитель Wi-Fi Alliance разработал и другие стандарты для более специализированного применения. К числу таких модификаций, исполняющих сервисные функции, относятся:

  • 802.11d - делает совместимым устройства беспроводной связи разных производителей, адаптирует их к особенностям передачи данных на уровне всей страны;
  • 802.11e - определяет качество отправляемых медиафайлов;
  • 802.11f - управляет многообразием точек доступа разных производителей, позволяет одинаково работать в разных сетях;

  • 802.11h - предотвращает потерю качества сигнала при влиянии метеорологического оборудования и военных радаров;
  • 802.11i - улучшенная версия защиты личной информации пользователей;
  • 802.11k - следит за нагрузкой определённой сети и перераспределяет пользователей на другие точки доступа;
  • 802.11m - содержит в себе все исправления стандартов 802.11;
  • 802.11p - определяет характер Wi-Fi-устройств, находящихся в диапазоне 1 км и движущихся со скоростью до 200 км/ч;
  • 802.11r - автоматически находит беспроводную сеть в роуминге и подключает к ней мобильные устройства;
  • 802.11s - организует полносвязное соединение, где каждый смартфон или планшет может быть маршрутизатором или точкой подключения;
  • 802.11t - эта сеть тестирует весь стандарт 802.11 целиком, выдаёт способы проверки и их результаты, выдвигает требования для работы оборудования;
  • 802.11u - эта модификация известна всем по разработкам Hotspot 2.0. Она обеспечивает взаимодействие беспроводных и внешних сетей;
  • 802.11v - в этой технологии создаются решения для совершенствования модификаций 802.11;
  • 802.11y - незаконченная технология, связывающая частоты 3,65–3,70 ГГц;
  • 802.11w - стандарт находит способы усиления защиты доступа к передаче информации.

Новейший и самый технологичный стандарт 802.11ас

Устройства модификации 802.11ас предоставляют пользователям абсолютно новое качество работы в интернете. Среди преимуществ этого стандарта следует выделить следующие:

  1. Высокая скорость. При передаче данных посредством сети 802.11ас используются более широкие каналы и повышенная частота, что увеличивает теоретическую скорость до 1,3 Гбит/с. На практике пропускная способность составляет до 600 Мбит/с. Кроме того, устройство на базе 802.11ас передаёт больше данных за один такт.

  1. Увеличенное количество частот. Модификация 802.11ас оснащена целым ассортиментом частот 5 ГГц. Новейшая технология обладает более сильным сигналом. Адаптер с высоким диапазоном охватывает полосу частот до 380 МГц.
  2. Зона покрытия сети 802.11ас. Этот стандарт предоставляет более широкий радиус действия сети. Кроме того, Wi-Fi-подключение работает даже через бетонные и гипсокартонные стены. Помехи, возникающие при работе домашней техники и соседского интернета, никак не влияют на работу вашего соединения.
  3. Обновлённые технологии. 802.11ас оснащён расширением MU-MIMO, которое обеспечивает бесперебойную работу нескольких устройств в сети. Технология Beamforming определяет устройство клиента и направляет ему сразу несколько потоков информации.

Познакомившись поближе со всеми существующими на сегодняшний день модификациями Wi-Fi-соединения, вы без труда сможете выбрать подходящую для ваших потребностей сеть. Следует напомнить, что большинство устройств содержит стандартный адаптер 802.11b, который также поддерживается технологией 802.11g. Если вы ищете беспроводную сеть 802.11ас, то количество оснащённых ею устройств сегодня невелико. Однако это весьма актуальная проблема и в скором времени всё современное оборудование перейдёт на стандарт 802.11ас. Не забудьте позаботиться о безопасности доступа в интернет, установив сложный код на своё Wi-Fi-соединение и антивирус для защиты компьютера от вирусного ПО.

О новом стандарте беспроводной связи IEEE 802.11n говорят уже не первый год. Оно и понятно, ведь один из главных недостатков существующих стандартов беспроводной связи IEEE 802.11a/b/g - слишком низкая скорость передачи данных. Действительно, теоретическая пропускная способность протоколов IEEE 802.11a/g составляет всего 54 Мбит/с, а реальная скорость передачи данных не превышает 25 Мбит/с. Новый же стандарт беспроводной связи IEEE 802.11n должен обеспечить скорость передачи до 300 Мбит/с, что на фоне 54 Мбит/с выглядит весьма заманчиво. Конечно же, реальная скорость передачи данных в стандарте IEEE 802.11n, как показывают результаты тестирования, не превышает 100 Мбит/с, однако даже в этом случае реальная скорость передачи данных оказывается вчетверо выше, чем в стандарте IEEE 802.11g. Стандарт IEEE 802.11n еще окончательно не принят (это должно произойти до конца 2007 года), однако уже сейчас практически все производители беспроводного оборудования приступили к выпуску устройств, совместимых с предварительной (Draft) версией стандарта IEEE 802.11n.
В настоящей статье мы рассмотрим базовые положения нового стандарта IEEE 802.11n и основные его отличия от стандартов 802.11a/b/g.

О стандартах беспроводной связи 802.11a/b/g мы уже достаточно подробно рассказывали на страницах нашего журнала. Поэтому в данной статье мы не будем во всех деталях описывать их, однако, чтобы основные отличия нового стандарта от его предшественников были очевидны, придется сделать дайджест ранее опубликованных статей по этой теме.

Рассматривая историю стандартов беспроводной связи, используемых для создания беспроводных локальных сетей (Wireless Local Area Network, WLAN), наверное, стоит вспомнить о стандарте IEEE 802.11, который хотя уже и не встречается в чистом виде, но является прародителем всех остальных стандартов беспроводной связи для сетей WLAN.

Стандарт IEEE 802.11

В стандарте 802.11 предусмотрено использование частотного диапазона от 2400 до 2483,5 МГц, то есть диапазона шириной 83,5 МГц, разбитого на несколько частотных подканалов.

В основе стандарта 802.11 лежит технология уширения спектра (Spread Spectrum, SS), которая подразумевает, что первоначально узкополосный (в смысле ширины спектра) полезный информационный сигнал при передаче преобразуется таким образом, что его спектр оказывается значительно шире, чем спектр первоначального сигнала. Одновременно с уширением спектра сигнала происходит и перераспределение спектральной энергетической плотности сигнала - энергия сигнала также «размазывается» по спектру.

В протоколе 802.11 применяется технология уширения спектра методом прямой последовательности (Direct Sequence Spread Spectrum, DSSS). Суть ее заключается в том, что для уширения спектра первоначально узкополосного сигнала в каждый передаваемый информационный бит встраивается чиповая последовательность, которая представляет собой последовательность прямоугольных импульсов. Если длительность одного чипового импульса в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n раз больше ширины спектра первоначального сигнала. При этом амплитуда передаваемого сигнала уменьшится в n раз.

Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами (PN-последовательностями), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.

Как уширить спектр сигнала и сделать его неотличимым от естественного шума - понятно. Для этого, в принципе, можно воспользоваться произвольной (случайной) чиповой последовательностью. Однако возникает вопрос, как такой сигнал принимать. Ведь если он становится шумоподобным, то выделить из него полезный информационный сигнал не так-то просто, если вообще возможно. Тем не менее сделать это можно, но для этого нужно соответствующим образом подобрать чиповую последовательность. Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определенным требованиям автокорреляции. Под автокорреляцией в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал можно будет выделить на уровне шума. Для этого в приемнике полученный сигнал умножается на чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал опять становится узкополосным, поэтому его фильтруют в узкой полосе частот, равной удвоенной скорости передачи. Любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приемника.

Чиповых последовательностей, отвечающих указанным требованиям автокорреляции, существует достаточно много, но для нас особый интерес представляют так называемые коды Баркера, поскольку именно они используются в протоколе 802.11. Коды Баркера обладают наилучшими среди известных псевдослучайных последовательностей свойствами шумоподобности, что и обусловило их широкое применение. В протоколах семейства 802.11 используется код Баркера длиной в 11 чипов.

Для того чтобы передать сигнал, информационная последовательность бит в приемнике складывается по модулю 2 (mod 2) c 11-чиповым кодом Баркера с использованием логического элемента XOR (исключающее ИЛИ). Таким образом, логическая единица передается прямой последовательностью Баркера, а логический нуль - инверсной последовательностью.

В стандарте 802.11 предусмотрено два скоростных режима - 1 и 2 Мбит/с.

При информационной скорости 1 Мбит/с скорость следования отдельных чипов последовательности Баркера составляет 11x106 чипов в секунду, а ширина спектра такого сигнала - 22 МГц.

Учитывая, что ширина частотного диапазона равна 83,5 МГц, получаем, что всего в данном частотном диапазоне можно уместить три неперекрывающихся частотных канала. Весь частотный диапазон, однако, принято делить на 11 частотных перекрывающихся каналов по 22 МГц, отстоящих друг от друга на 5 МГц. К примеру, первый канал занимает частотный диапазон от 2400 до 2423 МГц и центрирован относительно частоты 2412 МГц. Второй канал центрирован относительно частоты 2417 МГц, а последний, 11-й канал - относительно частоты 2462 МГц. При таком рассмотрении 1, 6 и 11-й каналы не перекрываются друг с другом и имеют 3-мегагерцевый зазор друг относительно друга. Именно эти три канала могут применяться независимо друг от друга.

Для модуляции синусоидального несущего сигнала при информационной скорости 1 Мбит/с используется относительная двоичная фазовая модуляция (Differential Binary Phase Shift Key, DBPSK).

При этом кодирование информации происходит за счет сдвига фазы синусоидального сигнала по отношению к предыдущему состоянию сигнала. Двоичная фазовая модуляция предусматривает два возможных значения сдвига фазы - 0 и p. Тогда логический нуль может передаваться синфазным сигналом (сдвиг по фазе равен 0), а единица - сигналом, который сдвинут по фазе на p.

Информационная скорость 1 Мбит/с является обязательной в стандарте IEEE 802.11 (Basic Access Rate), но опционально возможна и скорость в 2 Мбит/с (Enhanced Access Rate). Для передачи данных на такой скорости используется та же технология DSSS с 11-чиповыми кодами Баркера, но для модуляции несущего колебания применяется относительная квадратурная фазовая модуляция (Differential Quadrature Phase Shift Key).

В заключение рассмотрения физического уровня протокола 802.11 отметим, что при информационной скорости 2 Мбит/с скорость следования отдельных чипов последовательности Баркера остается прежней, то есть 11x106 чипов в секунду, а следовательно, не меняется и ширина спектра передаваемого сигнала.

Стандарт IEEE 802.11b

На смену стандарту IEEE 802.11 пришел стандарт IEEE 802.11b, который был принят в июле 1999 года. Данный стандарт является своего рода расширением базового протокола 802.11 и, кроме скоростей 1 и 2 Мбит/с, предусматривает скорости 5,5 и 11 Мбит/с, для работы на которых используются так называемые комплементарные коды (Complementary Code Keying, CCK).

Комплементарные коды, или CCK-последовательности, обладают тем свойством, что сумма их автокорреляционных функций для любого циклического сдвига, отличного от нуля, всегда равна нулю, поэтому они, как и коды Баркера, могут использоваться для распознавания сигнала на фоне шума.

Основное отличие CCK-последовательностей от рассмотренных ранее кодов Баркера заключается в том, что существует не строго заданная последовательность, посредством которой можно кодировать либо логический нуль, либо единицу, а целый набор последовательностей. Это обстоятельство позволяет кодировать в одном передаваемом символе несколько информационных бит и тем самым повышает информационную скорость передачи.

В стандарте IEEE 802.11b речь идет о комплексных комплементарных 8-чиповых последовательностях, определенных на множестве комплексных элементов, принимающих значения {1, –1, +j, –j }.

Комплексное представление сигнала - это удобный математический аппарат для представления модулированного по фазе сигнала. Так, значение последовательности равное 1 соответствует сигналу, синфазному к сигналу генератора, а значение последовательности равное –1 - противофазному сигналу; значение последовательности равное j - сигналу, сдвинутому по фазе на p/2, а значение равное –j , - сигналу, сдвинутому по фазе на –p/2.

Каждый элемент CCK-последовательности представляет собой комплексное число, значение которого определяется по довольно сложному алгоритму. Всего существует 64 набора возможных CCK-последовательностей, причем выбор каждой из них определяется последовательностью входных бит. Для однозначного выбора одной CCK-последовательности требуется знать шесть входных бит. Таким образом, в протоколе IEEE 802.11b при кодировании каждого символа используется одна из 64 возможных восьмиразрядных CKK-последовательностей.

При скорости 5,5 Мбит/с в одном символе одновременно кодируется 4, а при скорости 11 Мбит/с - 8 битов данных. При этом в обоих случаях символьная скорость передачи составляет 1,385x106 символов в секунду (11/8 = 5,5/4 = 1,385), а учитывая, что каждый символ задается 8-чиповой последовательностью, получаем, что в обоих случаях скорость следования отдельных чипов составляет 11x106 чипов в секунду. Соответственно ширина спектра сигнала при скорости как 11, так и 5,5 Мбит/с составляет 22 МГц.

Стандарт IEEE 802.11g

Стандарт IEEE 802.11g, принятый в 2003 году, является логическим развитием стандарта 802.11b и предполагает передачу данных в том же частотном диапазоне, но с более высокими скоростями. Кроме того, стандарт 802.11g полностью совместим с 802.11b, то есть любое устройство 802.11g должно поддерживать работу с устройствами 802.11b. Максимальная скорость передачи данных в стандарте 802.11g составляет 54 Мбит/с.

При разработке стандарта 802.11g рассматривались две конкурирующие технологии: метод ортогонального частотного разделения OFDM, заимствованный из стандарта 802.11a и предложенный к рассмотрению компанией Intersil, и метод двоичного пакетного сверточного кодирования PBCC, предложенный компанией Texas Instruments. В результате стандарт 802.11g содержит компромиссное решение: в качестве базовых применяются технологии OFDM и CCK, а опционально предусмотрено использование технологии PBCC.

Идея сверточного кодирования (Packet Binary Convolutional Coding, PBCC) заключается в следующем. Входящая последовательность информационных бит преобразуется в сверточном кодере таким образом, чтобы каждому входному биту соответствовало более одного выходного. То есть сверточный кодер добавляет определенную избыточную информацию к исходной последовательности. Если, к примеру, каждому входному биту соответствуют два выходных, то говорят о сверточном кодировании со скоростью r = 1/2. Если же каждым двум входным битам соответствуют три выходных, то будет составлять уже 2/3.

Любой сверточный кодер строится на основе нескольких последовательно связанных запоминающих ячеек и логических элементов XOR. Количество запоминающих ячеек определяет количество возможных состояний кодера. Если, к примеру, в сверточном кодере используется шесть запоминающих ячеек, то в кодере хранится информация о шести предыдущих состояниях сигнала, а с учетом значения входящего бита получим, что в таком кодере применяется семь бит входной последовательности. Такой сверточный кодер называется кодером на семь состояний (K = 7).

Выходные биты, формируемые в сверточном кодере, определяются операциями XOR между значениями входного бита и битами, хранимыми в запоминающих ячейках, то есть значение каждого формируемого выходного бита зависит не только от входящего информационного бита, но и от нескольких предыдущих битов.

В технологии PBCC используются сверточные кодеры на семь состояний (K = 7) со скоростью r = 1/2.

Главным достоинством сверточных кодеров является помехоустойчивость формируемой ими последовательности. Дело в том, что при избыточности кодирования даже в случае возникновения ошибок приема исходная последовательность бит может быть безошибочно восстановлена. Для восстановления исходной последовательности бит на стороне приемника применяется декодер Витерби.

Дибит, формируемый в сверточном кодере, используется в дальнейшем в качестве передаваемого символа, но предварительно он подвергается фазовой модуляции. Причем в зависимости от скорости передачи возможна двоичная, квадратурная или даже восьмипозиционная фазовая модуляция.

В отличие от технологий DSSS (коды Баркера, ССК-последовательности), в технологии сверточного кодирования не применяется технология уширения спектра за счет использования шумоподобных последовательностей, однако уширение спектра до стандартных 22 МГц предусмотрено и в данном случае. Для этого применяют вариации возможных сигнальных созвездий QPSK и BPSK.

Рассмотренный метод PBCC-кодирования опционально используется в протоколе 802.11b на скоростях 5,5 и 11 Мбит/с. Аналогично в протоколе 802.11g для скоростей передачи 5,5 и 11 Мбит/с этот способ тоже применяется опционально. Вообще, вследствие совместимости протоколов 802.11b и 802.11g технологии кодирования и скорости, предусмотренные протоколом 802.11b, поддерживаются и в протоколе 802.11g. В этом плане до скорости 11 Мбит/с протоколы 802.11b и 802.11g совпадают друг с другом, за исключением того, что в протоколе 802.11g предусмотрены такие скорости, которых нет в протоколе 802.11b.

Опционально в протоколе 802.11g технология PBCC может использоваться при скоростях передачи 22 и 33 Мбит/с.

Для скорости 22 Мбит/с по сравнению с уже рассмотренной нами схемой PBCC передача данных имеет две особенности. Прежде всего, применяется 8-позиционная фазовая модуляция (8-PSK), то есть фаза сигнала может принимать восемь различных значений, что позволяет в одном символе кодировать уже три бита. Кроме того, в схему, за исключением сверточного кодера, добавлен пунктурный кодер (Puncture). Смысл такого решения довольно прост: избыточность сверточного кодера, равная 2 (на каждый входной бит приходится два выходных), достаточно высока и при определенных условиях помеховой обстановки является излишней, поэтому можно уменьшить избыточность, чтобы, к примеру, каждым двум входным битам соответствовали три выходных. Для этого можно, конечно, разработать соответствующий сверточный кодер, но лучше добавить в схему специальный пунктурный кодер, который будет просто уничтожать лишние биты.

Допустим, пунктурный кодер удаляет один бит из каждых четырех входных бит. Тогда каждым четырем входящим бит будут соответствовать три выходящих. Скорость такого кодера составляет 4/3. Если же такой кодер используется в паре со сверточным кодером со скоростью 1/2, то общая скорость кодирования составит уже 2/3, то есть каждым двум входным битам будут соответствовать три выходных.

Как уже отмечалось, технология PBCC является опциональной в стандарте IEEE 802.11g, а технология OFDM - обязательной. Для того чтобы понять суть технологии OFDM, рассмотрим более подробно многолучевую интерференцию, возникающую при распространении сигналов в открытой среде.

Эффект многолучевой интерференции сигналов заключается в том, что в результате многократных отражений от естественных преград один и тот же сигнал может попадать в приемник различными путями. Но разные пути распространения отличаются друг от друга по длине, а потому ослабление сигнала будет для них неодинаковым. Следовательно, в точке приема результирующий сигнал представляет собой интерференцию многих сигналов, имеющих различные амплитуды и смещенных друг относительно друга по времени, что эквивалентно сложению сигналов с разными фазами.

Следствием многолучевой интерференции является искажение принимаемого сигнала. Многолучевая интерференция присуща любому типу сигналов, но особенно негативно она сказывается на широкополосных сигналах, поскольку при использовании широкополосного сигнала в результате интерференции определенные частоты складываются синфазно, что приводит к увеличению сигнала, а некоторые, наоборот, противофазно, вызывая ослабление сигнала на данной частоте.

Говоря о многолучевой интерференции, возникающей при передаче сигналов, отмечают два крайних случая. В первом из них максимальная задержка между сигналами не превышает длительности одного символа и интерференция возникает в пределах одного передаваемого символа. Во втором - максимальная задержка между сигналами больше длительности одного символа, поэтому в результате интерференции складываются сигналы, представляющие разные символы, и возникает так называемая межсимвольная интерференция (Inter Symbol Interference, ISI).

Наиболее отрицательно на искажение сигнала влияет именно межсимвольная интерференция. Поскольку символ - это дискретное состояние сигнала, характеризующееся значениями частоты несущей, амплитуды и фазы, для разных символов меняются амплитуда и фаза сигнала, а следовательно, восстановить исходный сигнал крайне сложно.

По этой причине при высоких скоростях передачи применяется метод кодирования данных, называемый ортогональным частотным разделением каналов с мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM). Суть его заключается в том, что поток передаваемых данных распределяется по множеству частотных подканалов и передача ведется параллельно на всех таких подканалах. При этом высокая скорость передачи достигается именно за счет одновременной передачи данных по всем каналам, тогда как скорость передачи в отдельном подканале может быть и невысокой.

Благодаря тому что в каждом из частотных подканалов скорость передачи данных можно сделать не слишком высокой, создаются предпосылки для эффективного подавления межсимвольной интерференции.

При частотном разделении каналов необходимо, чтобы отдельный канал был достаточно узким для минимизации искажения сигнала, но в то же время - достаточно широким для обеспечения требуемой скорости передачи. Кроме того, для экономного использования всей полосы канала, разделяемого на подканалы, желательно расположить частотные подканалы как можно ближе друг к другу, но при этом избежать межканальной интерференции, чтобы обеспечить их полную независимость. Частотные каналы, удовлетворяющие вышеперечисленным требованиям, называются ортогональными. Несущие сигналы всех частотных подканалов ортогональны друг другу. Важно, что ортогональность несущих сигналов гарантирует частотную независимость каналов друг от друга, а следовательно, и отсутствие межканальной интерференции.

Рассмотренный способ деления широкополосного канала на ортогональные частотные подканалы называется ортогональным частотным разделением с мультиплексированием (OFDM). Для его реализации в передающих устройствах используется обратное быстрое преобразование Фурье (IFFT), переводящее предварительно мультиплексированный на n -каналов сигнал из временно го представления в частотное.

Одним из ключевых преимуществ метода OFDM является сочетание высокой скорости передачи с эффективным противостоянием многолучевому распространению. Конечно, сама по себе технология OFDM не исключает многолучевого распространения, но создает предпосылки для устранения эффекта межсимвольной интерференции. Дело в том, что неотъемлемой частью технологии OFDM является охранный интервал (Guard Interval, GI) - циклическое повторение окончания символа, пристраиваемое в начале символа.

Охранный интервал создает паузы между отдельными символами, и если его длительность превышает максимальное время задержки сигнала в результате многолучевого распространения, то межсимвольной интерференции не возникает.

При использовании технологии OFDM длительность охранного интервала составляет одну четвертую длительности самого символа. При этом символ имеет длительность 3,2 мкс, а охранный интервал - 0,8 мкс. Таким образом, длительность символа вместе с охранным интервалом составляет 4 мкс.

Говоря о технологии частотного ортогонального разделения каналов OFDM, применяемой на различных скоростях в протоколе 802.11g, мы до сих пор не касались вопроса о методе модуляции несущего сигнала.

В протоколе 802.11g на низких скоростях передачи применяется двоичная и квадратурная фазовые модуляции BPSK и QPSK. При использовании BPSK-модуляции в одном символе кодируется только один информационный бит, а при QPSK-модуляции - два информационных бита. Модуляция BPSK применяется для передачи данных на скоростях 6 и 9 Мбит/с, а модуляция QPSK - на скоростях 12 и 18 Мбит/с.

Для передачи на более высоких скоростях используется квадратурная амплитудная модуляция QAM (Quadrature Amplitude Modulation), при которой информация кодируется за счет изменения фазы и амплитуды сигнала. В протоколе 802.11g применяется модуляция 16-QAM и 64-QAM. Первая модуляция предполагает 16 различных состояний сигнала, что позволяет закодировать 4 бита в одном символе; вторая - 64 возможных состояния сигнала, что дает возможность закодировать последовательность 6 бит в одном символе. Модуляция 16-QAM используется на скоростях 24 и 36 Мбит/с, а модуляция 64-QAM - на скоростях 48 и 54 Мбит/с.

Кроме применения CCK-, OFDM- и PBCC-кодирований, в стандарте IEEE 802.11g опционально предусмотрены также различные варианты гибридного кодирования.

Для того чтобы понять сущность этого термина, вспомним, что любой передаваемый пакет данных содержит заголовок (преамбулу) со служебной информацией и поле данных. Когда речь идет о пакете в формате CCK, имеется в виду, что заголовок и данные кадра передаются в формате CCK. Аналогично при использовании технологии OFDM заголовок кадра и данные передаются посредством OFDM-кодирования. Гибридное кодирование подразумевает, что для заголовка кадра и полей данных могут использоваться различные технологии кодирования. К примеру, при применении технологии CCK-OFDM заголовок кадра кодируется с помощью CCK-кодов, но сами данные кадра передаются с использованием многочастотного OFDM-кодирования. Таким образом, технология CCK-OFDM является своеобразным гибридом CCK и OFDM. Однако это не единственная гибридная технология - при использовании пакетного кодирования PBCC заголовок кадра передается с помощью CCK-кодов, а данные кадра кодируются с применением PBCC.

Стандарт IEEE 802.11а

Рассмотренные выше стандарты IEEE 802.11b и IEEE 802.11g относятся к частотному диапазону 2,4 ГГц (от 2,4 до 2,4835 ГГц), а стандарт IEEE 802.11a, принятый в 1999 году, предполагает использование уже более высокочастотного диапазона (от 5,15 до 5,350 ГГц и от 5,725 до 5,825 ГГц). В США данный диапазон называют диапазоном нелицензионной национальной информационной инфраструктуры (Unlicensed National Information Infrastructure, UNII).

В соответствии с правилами FCC частотный диапазон UNII разбит на три 100-мегагерцевых поддиапазона, различающихся ограничениями по максимальной мощности излучения. Низший диапазон (от 5,15 до 5,25 ГГц) предусматривает мощность всего 50 мВт, средний (от 5,25 до 5,35 ГГц) - 250 мВт, а верхний (от 5,725 до 5,825 ГГц) - 1 Вт. Использование трех частотных поддиапазонов с общей шириной 300 МГц делает стандарт IEEE 802.11а самым широкополосным из семейства стандартов 802.11 и позволяет разбить весь частотный диапазон на 12 каналов, каждый из которых имеет ширину 20 МГц, причем восемь из них лежат в 200-мегагерцевом диапазоне от 5,15 до 5,35 ГГц, а остальные четыре канала - в 100-мегагерцевом диапазоне от 5,725 до 5,825 ГГц (рис. 1). При этом четыре верхних частотных канала, предусматривающие наибольшую мощность передачи, используются преимущественно для передачи сигналов вне помещений.

Рис. 1. Разделение диапазона UNII на 12 частотных поддиапазонов

Стандарт IEEE 802.11a основан на технике частотного ортогонального разделения каналов с мультиплексированием (OFDM). Для разделения каналов применяется обратное преобразование Фурье с окном в 64 частотных подканала. Поскольку ширина каждого из 12 каналов, определяемых в стандарте 802.11а, имеет значение 20 МГц, получается, что каждый ортогональный частотный подканал (поднесущая) имеет ширину 312,5 кГц. Однако из 64 ортогональных подканалов задействуется только 52, причем 48 из них применяются для передачи данных (Data Tones), а остальные - для передачи служебной информации (Pilot Тones).

По технике модуляции протокол 802.11a мало чем отличается от 802.11g. На низких скоростях передачи для модуляции поднесущих частот используется двоичная и квадратурная фазовые модуляции BPSK и QPSK. При применении BPSK-модуляции в одном символе кодируется только один информационный бит. Соответственно при использовании QPSK-модуляции, то есть когда фаза сигнала может принимать четыре различных значения, в одном символе кодируются два информационных бита. Модуляция BPSK используется для передачи данных на скоростях 6 и 9 Мбит/с, а модуляция QPSK - на скоростях 12 и 18 Мбит/с.

Для передачи на более высоких скоростях в стандарте IEEE 802.11а используется квадратурная амплитудная модуляция 16-QAM и 64-QAM. В первом случае имеется 16 различных состояний сигнала, что позволяет закодировать 4 бита в одном символе, а во втором - уже 64 возможных состояния сигнала, что позволяет закодировать последовательность из 6 битов в одном символе. Модуляция 16-QAM применяется на скоростях 24 и 36 Мбит/с, а модуляция 64-QAM - на скоростях 48 и 54 Мбит/с.

Информационная емкость OFDM-символа определяется типом модуляции и числом поднесущих. Поскольку для передачи данных применяются 48 поднесущих, емкость OFDM-символа составляет 48 x Nb, где Nb - двоичный логарифм от числа позиций модуляции, или, проще говоря, количество бит, которые кодируются в одном символе в одном подканале. Соответственно емкость OFDM-символа составляет от 48 до 288 бит.

Последовательность обработки входных данных (битов) в стандарте IEEE 802.11а выглядит следующим образом. Первоначально входной поток данных подвергается стандартной операции скрэмблирования. После этого поток данных поступает на сверточный кодер. Скорость сверточного кодирования (в сочетании с пунктурным кодированием) может составлять 1/2, 2/3 или 3/4.

Поскольку скорость сверточного кодирования может быть разной, то при использовании одного и того же типа модуляции скорость передачи данных оказывается различной.

Рассмотрим, к примеру, модуляцию BPSK, при которой скорость передачи данных составляет 6 или 9 Мбит/с. Длительность одного символа вместе с охранным интервалом равна 4 мкс, а значит, частота следования импульсов составит 250 кГц. Учитывая, что в каждом подканале кодируется по одному биту, а всего таких подканалов 48, получаем, что общая скорость передачи данных составит 250 кГц x 48 каналов = 12 МГц. Если при этом скорость сверточного кодирования равна 1/2 (на каждый информационный бит добавляется один служебный), информационная скорость окажется вдвое меньше полной скорости, то есть 6 Мбит/с. При скорости сверточного кодирования 3/4 на каждые три информационных бита добавляется один служебный, поэтому в данном случае полезная (информационная) скорость составляет 3/4 от полной скорости, то есть 9 Мбит/с.

Аналогичным образом каждому типу модуляции соответствуют две различные скорости передачи (табл. 1).

Таблица 1. Соотношение между скоростями передачи
и типом модуляции в стандарте 802.11a

Скорость передачи, Мбит/с

Тип модуляции

Скорость сверточного кодирования

Количество бит
в одном символе
в одном подканале

Общее количество бит в символе
(48 подканалов)

Количество информационных бит в символе

После сверточного кодирования поток бит подвергается операции перемежения, или интерливинга. Суть ее заключается в изменении порядка следования бит в пределах одного OFDM-символа. Для этого последовательность входных бит разбивается на блоки, длина которых равна числу бит в OFDM-символе (NCBPS). Далее по определенному алгоритму производится двухэтапная перестановка бит в каждом блоке. На первом этапе биты переставляются таким образом, чтобы смежные биты при передаче OFDM-символа передавались на несмежных поднесущих. Алгоритм перестановки бит на этом этапе эквивалентен следующей процедуре. Первоначально блок бит длиной NCBPS построчно (строка за строкой) записывается в матрицу, содержащую 16 строк и NCBPS/16 рядов. Далее биты считываются из этой матрицы, но уже по рядам (или так же, как записывались, но из транспонированной матрицы). В результате такой операции первоначально соседние биты будут передаваться на несмежных поднесущих.

Затем следует этап второй перестановки битов, цель которого заключается в том, чтобы соседние биты не оказались одновременно в младших разрядах групп, определяющих модуляционный символ в сигнальном созвездии. То есть после второго этапа перестановки соседние биты оказываются попеременно в старших и младших разрядах групп. Делается это с целью улучшения помехоустойчивости передаваемого сигнала.

После перемежения последовательность бит разбивается на группы по числу позиций выбранного типа модуляции и формируются OFDM-символы.

Сформированные OFDM-символы подвергаются быстрому преобразованию Фурье, в результате чего формируются выходные синфазный и квадратурный сигналы, которые затем подвергаются стандартной обработке - модуляции.

Стандарт IEEE 802.11n

Разработка стандарта IEEE 802.11n официально началась 11 сентября 2002 года, то есть еще за год до окончательного принятия стандарта IEEE 802.11g. Во второй половине 2003 года была создана целевая группа (Task Group) IEEE 802.11n (802.11 TGn), в задачу которой входила разработка нового стандарта беспроводной связи на скорости свыше 100 Мбит/с. Этой же задачей занималась и другая целевая группа - 802.15.3a. К 2005 году процессы выработки единого решения в каждой из групп зашли в тупик. В группе 802.15.3а наблюдалось противостояние компании Motorola и всех остальных членов группы, а члены группы IEEE 802.11n разбились на два примерно одинаковых лагеря: WWiSE (World Wide Spectrum Efficiency) и TGn Sync. Группу WWiSE возглавляла компания Aigro Networks, а группу TGn Sync - компания Intel. В каждой из групп долгое время ни один из альтернативных вариантов не мог набрать необходимые для его утверждения 75% голосов.

После почти трех лет безуспешного противостояния и попыток выработать компромиссное решение, которое устраивало бы всех, участники группы 802.15.3а практически единогласно проголосовали за ликвидацию проекта 802.15.3а. Члены проекта IEEE 802.11n оказались более гибкими - им удалось договориться и создать объединенное предложение, которое устраивало бы всех. В результате 19 января 2006 года на очередной конференции, проходившей в Коне на Гавайях, была одобрена предварительная (draft) спецификация стандарта IEEE 802.11n. Из 188 членов рабочей группы 184 выступили за принятие стандарта, а четверо воздержались. Основные положения одобренного документа лягут в основу окончательной спецификации нового стандарта.

Стандарт IEEE 802.11n основан на технологии OFDM-MIMO. Очень многие реализованные в нем технические детали позаимствованы из стандарта 802.11a, однако в стандарте IEEE 802.11n предусматривается использование как частотного диапазона, принятого для стандарта IEEE 802.11a, так и частотного диапазона, принятого для стандартов IEEE 802.11b/g. То есть устройства, поддерживающие стандарт IEEE 802.11n, могут работать в частотном диапазоне либо 5, либо 2,4 ГГц, причем конкретная реализация зависит от страны. Для России устройства стандарта IEEE 802.11n будут поддерживать частотный диапазон 2,4 ГГц.

Увеличение скорости передачи в стандарте IEEE 802.11n достигается, во-первых, благодаря удвоению ширины канала с 20 до 40 МГц, а во-вторых, за счет реализации технологии MIMO.

Технология MIMO (Multiple Input Multiple Output) предполагает применение нескольких передающих и принимающих антенн. По аналогии традиционные системы, то есть системы с одной передающей и одной принимающей антенной, называются SISO (Single Input Single Output).

Теоретически MIMO-система с n передающими и n принимающими антеннами способна обеспечить пиковую пропускную способность в n раз бoльшую, чем системы SISO. Это достигается за счет того, что передатчик разбивает поток данных на независимые последовательности бит и пересылает их одновременно, используя массив антенн. Такая техника передачи называется пространственным мультиплексированием. Отметим, что все антенны передают данные независимо друг от друга в одном и том же частотном диапазоне.

Рассмотрим, к примеру, MIMO-систему, состоящую из n передающих и m принимающих антенн (рис. 2).

Рис. 2. Принцип реализации технологии MIMO

Передатчик в такой системе посылает n независимых сигналов, применяя n антенн. На приемной стороне каждая из m антенн получает сигналы, которые являются суперпозицией n сигналов от всех передающих антенн. Таким образом, сигнал R1 , принимаемый первой антенной, можно представить в виде:

Записывая подобные уравнения для каждой приемной антенны, получим следующую систему:

Или, переписав данное выражение в матричном виде:

где [H ] - матрица переноса, описывающая MIMO-канал связи.

Для того чтобы на приемной стороне декодер мог правильно восстановить все сигналы, он должен прежде всего определить коэффициенты h ij , характеризующие каждый из m x n каналов передачи. Для определения коэффициентов h ij в технологии MIMO используется преамбула пакета.

Определив коэффициенты матрицы переноса, можно легко восстановить переданный сигнал:

где [H ]–1 - матрица, обратная матрице переноса [H ].

Важно отметить, что в технологии MIMO применение нескольких передающих и принимающих антенн позволяет повысить пропускную способность канала связи за счет реализации нескольких пространственно разнесенных подканалов, при этом данные передаются в одном и том же частотном диапазоне.

Технология MIMO никак не затрагивает метод кодирования данных и в принципе может использоваться в сочетании с любыми методами физического и логического кодирования данных.

Впервые технология MIMO была описана в стандарте IEEE 802.16. Этот стандарт допускает применение технологии MISO, то есть нескольких передающих антенн и одной принимающей. В стандарте IEEE 802.11n допускается использование до четырех антенн у точки доступа и беспроводного адаптера. Обязательный режим подразумевает поддержку двух антенн у точки доступа и одной антенны и беспроводного адаптера.

В стандарте IEEE 802.11n предусмотрены как стандартные каналы связи шириной 20 МГц, так и каналы с удвоенной шириной. Однако применение 40-мегагерцевых каналов является опциональной возможностью стандарта, поскольку использование таких каналов может противоречить законодательству некоторых стран.

В стандарте 802.11n предусмотрено два режима передачи: стандартный режим передачи (L) и режим с высокой пропускной способностью (High Throughput, HT). В традиционных режимах передачи используются 52 частотных OFDM-подканала (поднесущих частот), из которых 48 задействуется для передачи данных, а остальные - для передачи служебной информации.

В режимах с повышенной пропускной способностью при ширине канала в 20 МГц применяются 56 частотных подканалов, из которых 52 задействуются для передачи данных, а четыре канала являются пилотными. Таким образом, даже при использовании канала шириной 20 МГц увеличение частотных подканалов с 48 до 52 позволяет повысить скорость передачи на 8%.

При применении канала удвоенной ширины, то есть канала шириной 40 МГц, в стандартном режиме передачи вещание фактически ведется на сдвоенном канале. Соответственно количество поднесущих частот увеличивается вдвое (104 подканала, из которых 96 являются информационными). Благодаря этому скорость передачи увеличивается на 100%.

При использовании 40-мегагерцевого канала и режима с высокой пропускной способностью применяются 114 частотных подканалов, из которых 108 подканалов - информационные, а шесть - пилотные. Соответственно это позволяет увеличить скорость передачи уже на 125%.

Таблица 2. Соотношение между скоростями передачи, типом модуляции
и скоростью сверточного кодирования в стандарте 802.11n
(канал шириной 20 МГц, HT-режим (52 частотных подканала))

Тип модуляции

Скорость сверточного кодирования

Количество бит в одном символе в одном подканале

Общее количество бит в OFDM-символе

Количество информационных бит на символ

Скорость передачи данных

Еще два обстоятельства, благодаря которым в стандарте IEEE 802.11n увеличивается скорость передачи, - это сокращение длительности охранного интервала GI в OGDM-символах с 0,8 до 0,4 мкс и повышение скорости сверточного кодирования. Напомним, что в протоколе IEEE 802.11a максимальная скорость сверточного кодирования составляет 3/4, то есть к каждым трем входным битам добавляется еще один. В протоколе IEEE 802.11n максимальная скорость сверточного кодирования равна 5/6, то есть каждые пять входных бит в сверточном кодере превращаются в шесть выходных. Соотношение между скоростями передачи, типом модуляции и скоростью сверточного кодирования для стандартного канала шириной 20 МГц приведены в табл. 2.

Комитет по стандартам IEEE 802 сформировал рабочую группу по стандартам для беспроводных локальных сетей 802.11 в 1990 году. Эта группа занялась разработкой всеобщего стандарта для радиооборудования и сетей, работающих на частоте 2,4 ГГц, со скоростями доступа 1 и 2 Mbps (Megabits-per-second). Работы по созданию стандарта были завершены через 7 лет, и в июне 1997 года была ратифицирована первая спецификация 802.11. Стандарт IEEE 802.11 являлся первым стандартом для продуктов WLAN от независимой международной организации, разрабатывающей большинство стандартов для проводных сетей. Однако к тому времени заложенная первоначально скорость передачи данных в беспроводной сети уже не удовлетворяла потребностям пользователей. Для того, чтобы сделать технологию Wireless LAN популярной, дешёвой, а главное, удовлетворяющей современным жёстким требованиям бизнес-приложений, разработчики были вынуждены создать новый стандарт.

В сентябре 1999 года IEEE ратифицировал расширение предыдущего стандарта. Названное IEEE 802.11b (также известное, как 802.11 High rate), оно определяет стандарт для продуктов беспроводных сетей, которые работают на скорости 11 Mbps (подобно Ethernet), что позволяет успешно применять эти устройства в крупных организациях. Совместимость продуктов различных производителей гарантируется независимой организацией, которая называется Wireless Ethernet Compatibility Alliance (WECA). Эта организация была создана лидерами индустрии беспроводной связи в 1999 году. В настоящее время членами WECA являются более 80 компаний, в том числе такие известные производители, как , , и пр. С продуктами, удовлетворяющими требованиям Wi-Fi (термин WECA для IEEE 802.11b), можно ознакомиться на сайте .

Потребность в беспроводном доступе к локальным сетям растёт по мере увеличения числа мобильных устройств, таких как ноутбуки и PDA, а так же с ростом желания пользователей быть подключенными к сети без необходимости "втыкать" сетевой провод в свой компьютер. По прогнозам, к 2003 году в мире будет насчитываться более миллиарда мобильных устройств, а стоимость рынка продукции WLAN к 2002 году прогнозируется более чем в 2 миллиарда долларов.

Стандарт IEEE 802.11 и его расширение 802.11b

Как и все стандарты IEEE 802, 802.11 работает на нижних двух уровнях модели ISO/OSI, физическом уровне и канальном уровне (рис. 1). Любое сетевое приложение, сетевая операционная система, или протокол (например, TCP/IP), будут так же хорошо работать в сети 802.11, как и в сети Ethernet.

Рис. 1. Уровни модели ISO/OSI и их соответствие стандарту 802.11.

Основная архитектура, особенности и службы 802.11b определяются в первоначальном стандарте 802.11. Спецификация 802.11b затрагивает только физический уровень, добавляя лишь более высокие скорости доступа.

Режимы работы 802.11

802.11 определяет два типа оборудования — клиент, который обычно представляет собой компьютер, укомплектованный беспроводной сетевой интерфейсной картой (Network Interface Card, NIC), и точку доступа (Access point, AP), которая выполняет роль моста между беспроводной и проводной сетями. Точка доступа обычно содержит в себе приёмопередатчик, интерфейс проводной сети (802.3), а также программное обеспечение, занимающееся обработкой данных. В качестве беспроводной станции может выступать ISA, PCI или PC Card сетевая карта в стандарте 802.11, либо встроенные решения, например, телефонная гарнитура 802.11.

Стандарт IEEE 802.11 определяет два режима работы сети — режим "Ad-hoc" и клиент/сервер (или режим инфраструктуры — infrastructure mode). В режиме клиент/сервер (рис. 2) беспроводная сеть состоит из как минимум одной точки доступа, подключенной к проводной сети, и некоторого набора беспроводных оконечных станций. Такая конфигурация носит название базового набора служб (Basic Service Set, BSS). Два или более BSS, образующих единую подсеть, формируют расширенный набор служб (Extended Service Set, ESS). Так как большинству беспроводных станций требуется получать доступ к файловым серверам, принтерам, Интернет, доступным в проводной локальной сети, они будут работать в режиме клиент/сервер.


Рис. 2. Архитектура сети "клиент/сервер".

Режим "Ad-hoc" (также называемый точка-точка, или независимый базовый набор служб, IBSS) — это простая сеть, в которой связь между многочисленными станциями устанавливается напрямую, без использования специальной точки доступа (рис. 3). Такой режим полезен в том случае, если инфраструктура беспроводной сети не сформирована (например, отель, выставочный зал, аэропорт), либо по каким-то причинам не может быть сформирована.


Рис. 3. Архитектура сети "Ad-hoc".

Физический уровень 802.11

На физическом уровне определены два широкополосных радиочастотных метода передачи и один — в инфракрасном диапазоне. Радиочастотные методы работают в ISM диапазоне 2,4 ГГц и обычно используют полосу 83 МГц от 2,400 ГГц до 2,483 ГГц. Технологии широкополосного сигнала, используемые в радиочастотных методах, увеличивают надёжность, пропускную способность, позволяют многим несвязанным друг с другом устройствам разделять одну полосу частот с минимальными помехами друг для друга.

Стандарт 802.11 использует метод прямой последовательности (Direct Sequence Spread Spectrum, DSSS) и метод частотных скачков (Frequency Hopping Spread Spectrum, FHSS). Эти методы кардинально отличаются, и несовместимы друг с другом.

Для модуляции сигнала FHSS использует технологию Frequency Shift Keying (FSK). При работе на скорости 1 Mbps используется FSK модуляция по Гауссу второго уровня, а при работе на скорости 2 Mbps — четвёртого уровня.

Метод DSSS использует технологию модуляции Phase Shift Keying (PSK). При этом на скорости 1 Mbps используется дифференциальная двоичная PSK, а на скорости 2 Mbps — дифференциальная квадратичная PSK модуляция.

Заголовки физического уровня всегда передаются на скорости 1 Mbps, в то время как данные могут передаваться со скоростями 1 и 2 Mbps.

Метод передачи в инфракрасном диапазоне (IR)

Реализация этого метода в стандарте 802.11 основана на излучении ИК передатчиком ненаправленного (diffuse IR) сигнала. Вместо направленной передачи, требующей соответствующей ориентации излучателя и приёмника, передаваемый ИК сигнал излучается в потолок. Затем происходит отражение сигнала и его приём. Такой метод имеет очевидные преимущества по сравнению с использованием направленных излучателей, однако есть и существенные недостатки — требуется потолок, отражающий ИК излучение в заданном диапазоне длин волн (850 — 950 нм); радиус действия всей системы ограничен 10 метрами. Кроме того, ИК лучи чувствительны к погодным условиям, поэтому метод рекомендуется применять только внутри помещений.

Поддерживаются две скорости передачи данных — 1 и 2 Mbps. На скорости 1 Mbps поток данных разбивается на квартеты, каждый из которых затем во время модуляции кодируется в один из 16-ти импульсов. На скорости 2 Mbps метод модуляции немного отличается — поток данных делится на битовые пары, каждая из которых модулируется в один из четырёх импульсов. Пиковая мощность передаваемого сигнала составляет 2 Вт.

Метод FHSS

При использовании метода частотных скачков полоса 2,4 ГГц делится на 79 каналов по 1 МГц. Отправитель и получатель согласовывают схему переключения каналов (на выбор имеется 22 таких схемы), и данные посылаются последовательно по различным каналам с использованием этой схемы. Каждая передача данных в сети 802.11 происходит по разным схемам переключения, а сами схемы разработаны таким образом, чтобы минимизировать шансы того, что два отправителя будут использовать один и тот же канал одновременно.

Метод FHSS позволяет использовать очень простую схему приёмопередатчика, однако ограничен максимальной скоростью 2 Mbps. Это ограничение вызвано тем, что под один канал выделяется ровно 1 МГц, что вынуждает FHSS системы использовать весь диапазон 2,4 ГГц. Это означает, что должно происходить частое переключение каналов (например, в США установлена минимальная скорость 2,5 переключения в секунду), что, в свою очередь, приводит к увеличению накладных расходов.

Метод DSSS

Метод DSSS делит диапазон 2,4 ГГц на 14 частично перекрывающихся каналов (в США доступно только 11 каналов). Для того, чтобы несколько каналов могли использоваться одновременно в одном и том же месте, необходимо, чтобы они отстояли друг от друга на 25 МГц (не перекрывались), для исключения взаимных помех. Таким образом, в одном месте может одновременно использоваться максимум 3 канала. Данные пересылаются с использованием одного из этих каналов без переключения на другие каналы. Чтобы компенсировать посторонние шумы, используется 11-ти битная последовательность Баркера, когда каждый бит данных пользователя преобразуется в 11 бит передаваемых данных. Такая высокая избыточность для каждого бита позволяет существенно повысить надёжность передачи, при этом значительно снизив мощность передаваемого сигнала. Даже если часть сигнала будет утеряна, он в большинстве случаев всё равно будет восстановлен. Тем самым минимизируется число повторных передач данных.

Изменения, внесённые 802.11b

Основное дополнение, внесённое 802.11b в основной стандарт — это поддержка двух новых скоростей передачи данных — 5,5 и 11 Mbps. Для достижения этих скоростей был выбран метод DSSS, так как метод частотных скачков в силу ограничений FCC не может поддерживать более высокие скорости. Из этого следует, что системы 802.11b будут совместимы с DSSS системами 802.11, но не будут работать с системами FHSS 802.11.

Для поддержки очень зашумлённых сред, а также работы на больших расстояниях, сети 802.11b используют динамический сдвиг скорости, который позволяет автоматически изменять скорость передачи данных в зависимости от свойств радиоканала. Например, пользователь может подключиться с максимальной скоростью 11 Mbps, но в том случае, если повысится уровень помех, или пользователь удалится на большое расстояние, мобильное устройство начнёт передавать на меньшей скорости — 5,5, 2 или 1 Mbps. В том случае, если возможна устойчивая работа на более высокой скорости, мобильное устройство автоматически начнёт передавать с более высокой скоростью. Сдвиг скорости — механизм физического уровня, и является прозрачным для вышестоящих уровней и пользователя.

Канальный (Data Link) уровень 802.11

Канальный уровень 802.11 состоит из двух подуровней: управления логической связью (Logical Link Control, LLC) и управления доступом к носителю (Media Access Control, MAC). 802.11 использует тот же LLC и 48-битовую адресацию, что и другие сети 802, что позволяет легко объединять беспроводные и проводные сети, однако MAC уровень имеет кардинальные отличия.

MAC уровень 802.11 очень похож на реализованный в 802.3, где он поддерживает множество пользователей на общем носителе, когда пользователь проверяет носитель перед доступом к нему. Для Ethernet сетей 802.3 используется протокол Carrier Sence Multiple Access with Collision Detection (CSMA/CD), который определяет, как станции Ethernet получают доступ к проводной линии, и как они обнаруживают и обрабатывают коллизии, возникающие в том случае, если несколько устройств пытаются одновременно установить связь по сети. Чтобы обнаружить коллизию, станция должна обладать способностью и принимать, и передавать одновременно. Стандарт 802.11 предусматривает использование полудуплексных приёмопередатчиков, поэтому в беспроводных сетях 802.11 станция не может обнаружить коллизию во время передачи.

Чтобы учесть это отличие, 802.11 использует модифицированный протокол, известный как Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), или Distributed Coordination Function (DCF). CSMA/CA пытается избежать коллизий путём использования явного подтверждения пакета (ACK), что означает, что принимающая станция посылает ACK пакет для подтверждения того, что пакет получен неповреждённым.

CSMA/CA работает следующим образом. Станция, желающая передавать, тестирует канал, и если не обнаружено активности, станция ожидает в течение некоторого случайного промежутка времени, а затем передаёт, если среда передачи данных всё ещё свободна. Если пакет приходит целым, принимающая станция посылает пакет ACK, по приёме которого отправителем завершается процесс передачи. Если передающая станция не получила пакет ACK, в силу того, что не был получен пакет данных, или пришёл повреждённый ACK, делается предположение, что произошла коллизия, и пакет данных передаётся снова через случайный промежуток времени.

Для определения того, является ли канал свободным, используется алгоритм оценки чистоты канала (Channel Clearance Algorithm, CCA). Его суть заключается в измерении энергии сигнала на антенне и определения мощности принятого сигнала (RSSI). Если мощность принятого сигнала ниже определённого порога, то канал объявляется свободным, и MAC уровень получает статус CTS. Если мощность выше порогового значения, передача данных задерживается в соответствии с правилами протокола. Стандарт предоставляет ещё одну возможность определения незанятости канала, которая может использоваться либо отдельно, либо вместе с измерением RSSI — метод проверки несущей. Этот метод является более выборочным, так как с его помощью производится проверка на тот же тип несущей, что и по спецификации 802.11. Наилучший метод для использования зависит от того, каков уровень помех в рабочей области.

Таким образом, CSMA/CA предоставляет способ разделения доступа по радиоканалу. Механизм явного подтверждения эффективно решает проблемы помех. Однако он добавляет некоторые дополнительные накладные расходы, которых нет в 802.3, поэтому сети 802.11 будут всегда работать медленнее, чем эквивалентные им Ethernet локальные сети.


Рис. 4. Иллюстрация проблемы "скрытой точки".

Другая специфичная проблема MAC-уровня — это проблема "скрытой точки", когда две станции могут обе "слышать" точку доступа, но не могут "слышать" друг друга, в силу большого расстояния или преград (рис. 4). Для решения этой проблемы в 802.11 на MAC уровне добавлен необязательный протокол Request to Send/Clear to Send (RTS/CTS). Когда используется этот протокол, посылающая станция передаёт RTS и ждёт ответа точки доступа с CTS. Так как все станции в сети могут "слышать" точку доступа, сигнал CTS заставляет их отложить свои передачи, что позволяет передающей станции передать данные и получить ACK пакет без возможности коллизий. Так как RTS/CTS добавляет дополнительные накладные расходы на сеть, временно резервируя носитель, он обычно используется только для пакетов очень большого объёма, для которых повторная передача была бы слишком дорогостоящей.

Наконец, MAC уровень 802.11 предоставляет возможность расчёта CRC и фрагментации пакетов. Каждый пакет имеет свою контрольную сумму CRC, которая рассчитывается и прикрепляется к пакету. Здесь наблюдается отличие от сетей Ethernet, в которых обработкой ошибок занимаются протоколы более высокого уровня (например, TCP). Фрагментация пакетов позволяет разбивать большие пакеты на более маленькие при передаче по радиоканалу, что полезно в очень "заселённых" средах или в тех случаях, когда существуют значительные помехи, так как у меньших пакетов меньше шансы быть повреждёнными. Этот метод в большинстве случаев уменьшает необходимость повторной передачи и, таким образом, увеличивает производительность всей беспроводной сети. MAC уровень ответственен за сборку полученных фрагментов, делая этот процесс "прозрачным" для протоколов более высокого уровня.

Подключение к сети

MAC уровень 802.11 несёт ответственность за то, каким образом клиент подключается к точке доступа. Когда клиент 802.11 попадает в зону действия одной или нескольких точек доступа, он на основе мощности сигнала и наблюдаемого значения количества ошибок выбирает одну из них и подключается к ней. Как только клиент получает подтверждение того, что он принят точкой доступа, он настраивается на радиоканал, в котором она работает. Время от времени он проверяет все каналы 802.11, чтобы посмотреть, не предоставляет ли другая точка доступа службы более высокого качества. Если такая точка доступа находится, то станция подключается к ней, перенастраиваясь на её частоту (рис. 5).


Рис. 5. Подключение к сети и иллюстрация правильного назначения каналов для точек доступа.

Переподключение обычно происходит в том случае, если станция была физически перемещена вдаль от точки доступа, что вызвало ослабление сигнала. В других случаях повторное подключение происходит из-за изменения радиочастотных характеристик здания, или просто из-за большого сетевого трафика через первоначальную точку доступа. В последнем случае эта функция протокола известна как "балансировка нагрузки", так как её главное назначение — распределение общей нагрузки на беспроводную сеть наиболее эффективно по всей доступной инфраструктуре сети.

Процесс динамического подключения и переподключения позволяет сетевым администраторам устанавливать беспроводные сети с очень широким покрытием, создавая частично перекрывающиеся "соты". Идеальным вариантом является такой, при котором соседние перекрывающиеся точки доступа будут использовать разные DSSS каналы, чтобы не создавать помех в работе друг другу (Рис. 5).

Поддержка потоковых данных

Потоковые данные, такие как видео или голос, поддерживаются в спецификации 802.11 на MAC уровне посредством Point Coordination Function (PCF). В противоположность Distributed Coordination Function (DCF), где управление распределено между всеми станциями, в режиме PCF только точка доступа управляет доступом к каналу. В том случае, если установлен BSS с включенной PCF, время равномерно распределяется промежутками для работы в режиме PCF и в режиме CSMA/CA. Во время периодов, когда система находится в режиме PCF, точка доступа опрашивает все станции на предмет получения данных. На каждую станцию выделяется фиксированный промежуток времени, по истечении которого производится опрос следующей станции. Ни одна из станций не может передавать в это время, за исключением той, которая опрашивается. Так как PCF даёт возможность каждой станции передавать в определённое время, то гарантируется максимальная латентность. Недостатком такой схемы является то, что точка доступа должна производить опрос всех станций, что становится чрезвычайно неэффективным в больших сетях.

Управление питанием

Дополнительно по отношению к управлению доступом к носителю, MAC уровень 802.11 поддерживает энергосберегающие режимы для продления срока службы батарей мобильных устройств. Стандарт поддерживает два режима потребления энергии, называемые "режим продолжительной работы" и "сберегающий режим". В первом случае радио всегда находится во включенном состоянии, в то время как во втором случае радио периодически включается через определённые промежутки времени для приёма "маячковых" сигналов, которые постоянно посылает точка доступа. Эти сигналы включают в себя информацию относительно того, какая станция должна принять данные. Таким образом, клиент может принять маячковый сигнал, принять данные, а затем вновь перейти в "спящий" режим.

Безопасность

802.11b обеспечивает контроль доступа на MAC уровне (второй уровень в модели ISO/OSI), и механизмы шифрования, известные как Wired Equivalent Privacy (WEP), целью которых является обеспечение беспроводной сети средствами безопасности, эквивалентными средствам безопасности проводных сетей. Когда включен WEP, он защищает только пакет данных, но не защищает заголовки физического уровня, так что другие станции в сети могут просматривать данные, необходимые для управления сетью. Для контроля доступа в каждую точку доступа помещается так называемый ESSID (или WLAN Service Area ID), без знания которого мобильная станция не сможет подключиться к точке доступа. Дополнительно точка доступа может хранить список разрешённых MAC адресов, называемый списком контроля доступа (Access Control List, ACL), разрешая доступ только тем клиентам, чьи MAC адреса находятся в списке.

Для шифрования данных стандарт предоставляет возможности шифрования с использованием алгоритма RC4 с 40-битным разделяемым ключом. После того, как станция подключается к точке доступа, все передаваемые данные могут быть зашифрованы с использованием этого ключа. Когда используется шифрование, точка доступа будет посылать зашифрованный пакет любой станции, пытающейся подключиться к ней. Клиент должен использовать свой ключ для шифрования корректного ответа для того, чтобы аутентифицировать себя и получить доступ в сеть. Выше второго уровня сети 802.11b поддерживают те же стандарты для контроля доступа и шифрования (например, IPSec), что и другие сети 802.

Безопасность для здоровья

Так как мобильные станции и точки доступа являются СВЧ устройствами, у многих возникают вопросы по поводу безопасности использования компонентов Wave LAN. Известно, что чем выше частота радиоизлучения, тем опаснее оно для человека. В частности, известно, что если посмотреть внутрь прямоугольного волновода, передающего сигнал частотой 10 или более ГГц, мощностью около 2 Вт, то неминуемо произойдёт повреждение сетчатки глаза, даже если продолжительность воздействия составит менее секунды. Антенны мобильных устройств и точек доступа являются источниками высокочастотного излучения, и хотя мощность излучаемого сигнала очень невелика, всё же не следует находиться в непосредственной близости от работающей антенны. Как правило, безопасным расстоянием является расстояние порядка десятков сантиметров от приёмо-передающих частей. Более точное значение можно найти в руководстве к конкретному прибору.

Дальнейшее развитие

В настоящее время разрабатываются два конкурирующих стандарта на беспроводные сети следующего поколения — стандарт IEEE 802.11a и европейский стандарт HIPERLAN-2. Оба стандарта работают во втором ISM диапазоне, использующем полосу частот в районе 5 ГГц. Заявленная скорость передачи данных в сетях нового поколения составляет 54 Mbps.

Производители устройств 802.11b

На сегодняшний день наиболее известными и популярными производителями на рынке WaveLAN решений являются компании Lucent (серия ORiNOCO) и Cisco (серия Aironet). Помимо них существует достаточно большое количество компаний, производящих 802.11b совместимое оборудование. К их числу можно отнести такие компании, как 3Com (серия 3Com AirConnect), Samsung, Compaq, Symbol, Zoom Telephonics и пр. В следующей части статьи мы рассмотрим характеристики серий ORiNOCO компании Lucent и Aironet компании Cisco, а затем произведём тестирование обоих серий.

Ссылки

  • — Рабочая группа 802.11
  • — WaveLAN на Украине
  • — Обзоры, тестирование WaveLAN, правовая информация

Одна из самых важных настроек беспроводной сети, это "Режим работы", "Режим беспроводной сети", "Mode" и т. д. Название зависит от маршрутизатора, прошивки, или языка панели управления. Данный пункт в настройках маршрутизатора позволяет задать определенный режим работы Wi-Fi (802.11) . Чаще всего, это смешанный режим b/g/n. Ну и ac, если у вас двухдиапазонный маршрутизатор.

Чтобы определить, какой режим лучше выбрать в настройках маршрутизатора, нужно сначала разобраться, что это вообще такое и на что влияют эти настройки. Думаю, не лишним будет скриншот с этими настройками на примере роутера TP-Link. Для диапазона 2.4 и 5 GHz.

На данный момент можно выделить 4 основных режима: b/g/n/ac . Основное отличие – максимальная скорость соединения. Обратите внимание, что скорость, о которой я буду писать ниже, это максимально возможная скорость (в один канал) . Которую можно получить в идеальных условия. В реальных условиях скорость соединения намного ниже.

IEEE 802.11 – это набор стандартов, на котором работают все Wi-Fi сети. По сути, это и есть Wi-Fi.

Давайте подробно рассмотрим каждый стандарт (по сути, это версии Wi-Fi) :

  • 802.11a – я когда писал о четырех основных режимах, то его не рассматривал. Это один из первых стандартов, работает в диапазоне 5 ГГц. Максимальная скорость 54 Мбит/c. Не самый популярный стандарт. Ну и старый уже. Сейчас в диапазоне 5 ГГц уже "рулит" стандарт ac.
  • 802.11b – работает в диапазоне 2.4 ГГц. Скорость до 11 Мбит/с.
  • 802.11g – можно сказать, что это более современный и доработанный стандарт 802.11b. Работает так же в диапазоне 2.4 ГГц. Но скорость уже до 54 Мбит/с. Совместим с 802.11b. Например, если ваше устройство может работать в этом режиме, то оно без проблем будет подключаться к сетям, которые работают в режиме b (более старом) .
  • 802.11n – самый популярный стандарт на сегодняшний день. Скорость до 150 Мбит/c в диапазоне 2.4 ГГц и до 600 Мбит/c в диапазоне 5 ГГц. Совместимость с 802.11a/b/g.
  • 802.11ac – новый стандарт, который работает только в диапазоне 5 ГГц. Скорость передачи данных до 6,77 Гбит/с (при наличии 8 антенн и в режиме MU-MIMO) . Данный режим есть только на двухдиапазонных маршрутизаторах, которые могут транслировать сеть в диапазоне 2.4 ГГц и 5 ГГц.

Скорость соединения

Как показывает практика, чаще всего настройки b/g/n/ac меняют с целью повысить скорость подключения к интернету. Сейчас постараюсь пояснить, как это работает.

Возьмем самый популярный стандарт 802.11n в диапазоне 2.4 ГГц, когда максимальная скорость 150 Мбит/с. Именно эта цифра чаще всего указана на коробке с маршрутизатором. Так же там может быт написано 300 Мбит/с, или 450 Мбит/с. Это зависит от количества антенн на маршрутизаторе. Если одна антенна, то роутер работает в один поток и скорость до 150 Мбит/с. Если две антенны, то два потока и скорость умножается на два – получаем уже до 300 Мбит/с и т. д.

Все это просто цифры. В реальных условиях скорость по Wi-Fi при подключении в режиме 802.11n будет 70-80 Мбит/с. Скорость зависит от огромного количества самых разных факторов: помехи, уровень сигнала, производительность и нагрузка на маршрутизатор, настройки и т. д.

Так как у них есть много версий веб-интерфейса, то рассмотрим несколько из них. Если в вашем случае светлый веб-интерфейс как на скриншоте ниже, то откройте раздел "Wi-Fi". Там будет пункт "Беспроводной режим" с четырьмя вариантами: 802.11 B/G/N mixed, и отдельно N/B/G.

Или даже так:

Настройка "802.11 Mode".

Диапазон радиочастот на роутере Netis

Откройте страницу с настройками в браузере по адресу http://netis.cc. Затем перейдите в раздел "Беспроводной режим".

Там будет меню "Диапаз. радиочастот". В нем можно сменить стандарт Wi-Fi сети. По умолчанию установлено "802.11 b+g+n".

Ничего сложного. Только настройки не забудьте сохранить.

Настройка сетевого режима Wi-Fi на роутере Tenda

Настройки находятся в разделе "Беспроводной режим" – "Основные настройки WIFI".

Пункт "Сетевой режим".

Можно поставить как смешанный режим (11b/g/n), так и отдельно. Например, только 11n.

Если у вас другой маршрутизатор, или настройки

Дать конкретные инструкции для всех устройств и версий программного обеспечения просто невозможно. Поэтому, если вам нужно сменить стандарт беспроводной сети, и вы не нашли своего устройства выше в статье, то смотрите настройки в разделе с названием "Беспроводная сеть", "WiFi", "Wireless".

Если не найдете, то напишите модель своего роутера в комментариях. И желательно прикрепить еще скриншот с панели управления. Подскажу вам где искать эти настройки.

На прилавках пестрят новые устройства на базе 802.11ac которые уже поступили в продажу, и очень скоро перед каждым юзером будет стоять вопрос, стоит ли переплачивать за новую версию Wi-Fi? Ответы на вопросы, касающиеся новой технологии, попробую осветить в данной статье.

802.11ac – предыстория

Последняя официально утвержденная версия стандарта (802.11n), находилась в разработке с 2002 по 2009 год, однако ее так называемая черновая версия (draft) была принята еще в 2007 году, и как многие, наверное, помнят, роутеры с поддержкой 802.11n draft можно было найти в продаже практически сразу после этого события.

Разработчики маршрутизаторов и других Wi-Fi устройств поступили тогда совершенно верно, не дожидаясь утверждения финальной версии протокола. Это позволило им на 2 года раньше выпустить устройства, обеспечивающие скорости передачи данных до 300 Мб/с, а когда стандарт был окончательно запечатлен на бумаге и появились первые 100% стандартизированные маршрутизаторы, старые модули не утратили совместимости за счет следования черновой версии стандарта, обеспечивающей совместимость на уровне железа (незначительные разногласия можно было устранить с помощью обновления программной прошивки).

С 802.11ac сейчас повторяется практически та же история, что была и с 802.11n. Сроки принятия нового стандарта пока точно не известны (предположительно не ранее конца 2013 года), но уже принятая черновая спецификация с большой вероятностью гарантирует, что все выпущенные сейчас устройства в будущем без проблем заработают с сертифицированными беспроводными сетями.

До недавнего времени каждая новая версия добавляла в конце стандарта 802.11 новую букву (например, 802.11g), и они возрастали в алфавитном порядке. Однако в 2011 году эту традицию немного нарушили и перепрыгнули с версии 802.11n сразу на 802.11ac.

Draft 802.11ac был принят в октябре прошлого года, однако первые коммерческие устройства на его основе появились буквально в течение нескольких последних месяцев. Например, Cisco выпустила свой первый маршрутизатор с поддержкой 802.11ac в конце июня 2012.

Улучшения в 802.11ac

Можно определенно говорить о том, что даже 802.11n еще не успел раскрыть себя в некоторых практических задачах, однако это не значит, что прогресс должен стоять на месте. Помимо более высокой скорости передачи данных, которая может быть задействована лишь через несколько лет, каждое усовершенствование Wi-Fi приносит и другие преимущества: повышенную стабильность сигнала, увеличенный диапазон покрытия, снижение энергопотребления. Все вышеперечисленное справедливо и для 802.11ac, так что ниже остановимся на каждом пункте подробнее.

802.11ac относится к пятому поколению беспроводных сетей, и в разговорном языке за ним может закрепиться название 5G WiFi, хотя официально оно неверно. При разработке этого стандарта одной из главных целей ставилось достижение гигабитной скорости передачи данных. В то время как использование дополнительных, как правило, еще не задействованных каналов, позволяет разогнать даже 802.11n до внушительных 600 Мб/с (для этого будут использоваться 4 канала, каждый из которых работает на скорости 150 Мб/с), гигабитную планку ему так и не суждено будет взять, и эта роль достанется его преемнику.

Указанную скорость (один гигабит) решено было брать не любой ценой, а с сохранением совместимости с более ранними версиями стандарта. Это значит, что в смешанных сетях все устройства будут работать независимо от того, какую версию 802.11 они поддерживают.

Для достижения этой цели 802.11ac будет по-прежнему работать на частоте до 6 ГГц. Но если в 802.11n для этого использовались сразу две частоты (2.4 и 5 ГГц), а в более ранних ревизиях только 2.4 ГГц, то в AC низкую частоту вычеркнут и оставят лишь 5 ГГц, так как именно она более эффективна для передачи данных.

Последнее замечание может показаться несколько противоречивым, поскольку на частоте 2.4 ГГц сигнал лучше распространяется на большие расстояния, эффективнее огибая препятствия. Однако этот диапазон уже занят огромным количеством «бытовых» волн (от устройств Bluetooth до микроволновых печей и другой домашней электроники), и на практике его применение только ухудшает результат.

Другой причиной для отказа от 2.4 ГГц стало то, что в этом диапазоне не хватит спектра для размещения достаточного количества каналов шириной в 80-160 МГц каждый.

Следует подчеркнуть, что, несмотря на разные рабочие частоты (2.4 и 5 ГГц), IEEE гарантирует совместимость ревизии AC с более ранними версиями стандарта. Каким образом это достигается, подробно не объяснено, но скорее всего, новые чипы будут использовать 5 ГГц как базовую частоту, однако при работе со старыми устройствами, не поддерживающими этот диапазон, смогут переключаться на более низкие частоты.

Скорость

Заметный прирост скорости в 802.11ac будет получен за счет сразу нескольких изменений. В первую очередь, за счет удвоения ширины канала. Если в 802.11n он уже был увеличен с 20 до 40 МГц, то в 802.11ac составит целых 80 МГц (по умолчанию), а в некоторых случаях и 160 МГц.

В ранних версиях 802.11 (до N спецификации) все данные передавались лишь в один поток. В N их число может составлять 4, хотя до сих пор чаще всего используются только 2 канала. На практике это значит, что суммарная максимальная скорость вычисляется как произведение максимальной скорости каждого канала на их количество. Для 802.11n получаем 150 x 4 = 600 Мб/с.

В 802.11ac пошли дальше. Теперь число каналов увеличено до 8, и максимально возможную скорость передачи в каждом конкретном случае можно узнать в зависимости от их ширины. При 160 МГц получается 866 Мб/с, и, умножив эту цифру на 8, получаем максимальную теоретическую скорость, которую может обеспечить стандарт, то есть почти 7 Гб/с, что в 23 раза быстрее, чем дает 802.11n.

Гигабитную, а тем более 7-гигабитную скорость передачи данных поначалу смогут обеспечить далеко не все чипы. Первые модели маршрутизаторов и других Wi-Fi устройств будут работать на более скромных скоростях.

Например, уже упомянутый первый 802.11ac роутер Cisco хоть и превосходит возможности 802.11n, тем не менее также не выбрался из «догигабитного» диапазона, демонстрируя лишь 866 Мб/с. При этом речь идет о старшей из двух доступных моделей, а младшая обеспечивает всего 600 Мб/c.

Впрочем, заметно ниже этих показателей скорости также не будут падать даже в устройствах самого начального уровня, поскольку минимальная возможная скорость передачи данных, согласно спецификациям, составляет для AC 450 Мб/c.

Экономное энергопотребление
Экономное расходование энергии станет одной из самых сильных сторон AC. Чипы на базе этой технологии уже пророчат во все мобильные устройства, утверждая, что это повысит автономность не только при равной, но и при более высокой скорости передачи данных.

К сожалению, до выхода первых устройств более точные цифры получить вряд ли удастся, а когда новые модели будут на руках, сравнить возросшую автономность можно будет лишь приблизительно, ввиду того, что на рынке вряд ли будет два одинаковых смартфона, отличающихся только беспроводным модулем. Ожидается, что массово такие устройства начнут появляться в продаже ближе к концу 2012 года, хотя первые ласточки уже видны на горизонте, например, ноутбук Asus G75VW, представленный в начале лета.

По словам Broadcom, новые устройства до 6 раз энергоэффективней при сравнении с их аналогами на базе 802.11n. Скорее всего, производитель сетевого оборудования ссылается на некие экзотические условия тестирования, и средняя цифра экономии будет гораздо ниже приведенной, но все равно должна заметно проявляться в виде дополнительных минут, а возможно, и часов работы мобильных устройств.

Возросшая автономность, как это часто бывает, не является в данном случае маркетинговым ходом, поскольку прямо следует из особенностей работы технологии. Например, тот факт, что данные будут передаваться на большей скорости, уже является причиной снижения расхода энергии. Поскольку тот же объем данных может быть получен за меньшее время, беспроводной модуль будет отключен раньше и, следовательно, перестанет обращаться к батарее.

Формирование направленного сигнала (Beamforming)
Эта методика формирования сигнала могла применяться еще в 802.11n, однако на тот момент ее не стандартизировали, и при использовании сетевого оборудования от различных производителей она, как правило, работала неверно. В 802.11ac все аспекты работы бимформинга унифицированы, поэтому он будет применяться на практике куда чаще, хотя все еще остается опциональным.

Названная методика решает проблему падения мощности сигнала, вызванную его отражением от различных предметов и поверхностей. При достижении приемника все эти сигналы приходят со сдвигом фазы, и таким образом уменьшают суммарную амплитуду.

Бимформинг решает эту проблему следующим образом. Передатчик приблизительно определяет местоположение приемника и, руководствуясь этой информацией, формирует сигнал нестандартным образом. В обычном режиме работы сигнал от приемника расходится равномерно во все стороны, а при бимформинге направляется в строго определенном направлении, что достигается с помощью нескольких антенн.

Бимформинг не только улучшает распространение сигнала на открытой территории, но также помогает «пробивать» стены. Если раньше роутер не
«доставал» в соседнюю комнату или обеспечивал крайне нестабильную связь с низкой скоростью, то с AC качество приема в той же самой точке будет гораздо лучше.

802.11ad

802.11ad, также как и 802.11ac, имеет второе, более легкое для запоминания, но неофициальное имя – WiGig.

Несмотря на название, эта спецификация не будет следующей за 802.11ac. Обе технологии начали развивать одновременно, и главная цель (преодоление гигабитного барьера) у них одна. Разные только подходы. Если AC стремится сохранить совместимость с предыдущими разработками, то AD начинает с чистого листа бумаги, что во многом упрощает его реализацию.

Главным отличием между соперничающими технологиями станет рабочая частота, из которой следуют все остальные особенности. Для AD она на порядок выше по сравнению с AC и составляет 60 ГГц вместо 5 ГГц.

В связи с этим рабочий диапазон (зона покрытая сигналом) также уменьшится, однако в нем будет гораздо меньше интерференций, поскольку 60 ГГц используются реже по сравнению с рабочей частотой 802.11ac, не говоря уже о 2.4 ГГц.

На каких именно дистанциях 802.11ad устройства будут видеть друг друга, сказать пока сложно. Не уточняя цифр, официальные источники говорят об «относительно небольших дистанциях в пределах одной комнаты». Отсутствие на пути сигнала стен и других серьезных препятствий также является обязательным и необходимым условием для работы. Очевидно, что речь идет о нескольких метрах, и символично, если бы пределом стало бы то же ограничение, что и для Bluetooth (10 метров).

Небольшой радиус передачи станет причиной того, что технологии AC и AD не будут конфликтовать между собой. Если первая нацелена на беспроводные сети для домов и офисов, то вторая будет использоваться в других целях. В каких именно, вопрос все еще открытый, но уже есть слухи о том, что AD наконец придет на смену Bluetooth, который не справляется со своими обязанностями из-за крайне низкой по нынешним меркам скорости передачи данных.

Стандарт также позиционируют для «замены проводных соединений» – вполне возможно, что в ближайшем будущем он станет известен как «беспроводной USB» и будет применяться для подключения принтеров, жестких дисков, возможно, мониторов и другой периферии.

Текущая Draft версия AD уже опередила свою первоначальную цель (1 Гб/c), и максимальная скорость передачи данных в ней составляет 7 Гб/с. При этом используемая технология позволяет улучшить эти показатели, оставаясь в рамках стандарта.

Что 802.11ac значит для простых пользователей

Вряд ли к моменту стандартизации технологии интернет-провайдеры уже начнут предлагать тарифные планы, для раскрытия которых необходима мощь 802.11ac. Следовательно, реальное применение более скоростному Wi-Fi на первых порах можно будет найти только в домашних сетях: быстрая передача файлов между устройствами, просмотр HD-фильмов при одновременной загрузке сети другими задачами, бэкап данных на внешние жесткие диски, подключенные непосредственно к роутеру.

802.11ac решает не только проблему со скоростью. Большое количество подключенных к роутеру устройств уже сейчас может создавать проблемы, даже если пропускная способность беспроводной сети используется не по максимуму. Учитывая, что количество таких устройств в каждой семье будет только расти, думать над проблемой надо уже сейчас, и AC является ее решением, позволяя одной сети работать с большим количеством беспроводных устройств.

Быстрее всего AC распространится в среде мобильных устройств. Если новый чип будет обеспечивать хотя бы 10% прирост автономности, его использование полностью оправдает себя даже при небольшом увеличении цены устройства. Первые смартфоны и планшеты на базе технологии AC, скорее всего, стоит ждать ближе к концу года. Как уже упоминалось, ноутбук с 802.11ac уже выпущен, однако, насколько известно, это пока единственная модель на рынке.

Как и предполагалось, стоимость первых AC-роутеров оказалась достаточно высокой, и резкого падения цен в ближайшие месяцы вряд ли стоит ждать, особенно если вспомнить, как ситуация развивалась с 802.11n. Однако уже в начале следующего года маршрутизаторы будут стоить меньше $150-200, которые производители просят за свои первые модели прямо сейчас.

Согласно просачивающейся небольшими дозами информации, Apple в очередной раз будет среди первых адептов новой технологии. Wi-Fi всегда был ключевым интерфейсом для всех устройств компании, к примеру, 802.11n нашел свой путь в технику Apple сразу после утверждения Draft спецификации в 2007 году, поэтому не удивительно, что 802.11ac также готовится к скорому дебюту в составе многих устройств Apple: ноутбуках, Apple TV, AirPort, Time Capsule и, возможно, iPhone/iPad.

В завершение, стоит напомнить, что все упомянутые скорости являются максимально теоретически достижимыми. И точно так же, как 802.11n на самом деле работает медленнее 300 Мб/с, реальные предельные скорости для AC также будут ниже того, что указано на устройстве.

Производительность в каждом случае будет сильно зависеть от используемого оборудования, наличия других беспроводных устройств, конфигурации помещения, но ориентировочно, роутер с надписью 1.3 Гб/с сможет передавать информацию не быстрее 800 Мб/с (что по-прежнему заметно выше теоретического максимума 802.11n).

Похожие статьи