Процессор четыре четырехъядерный. Что лучше многоядерность или более высокая частота

Короткое повествование на простом языке о ядрах мобильных процессоров, их функциях и необходимом количестве.

Навигация

Для любого человека, который решается обзавестись новеньким смартфоном, основным критерием выбора является не только цена, но и мощность гаджета. Если перейти на сайт какого-нибудь интернет магазина и открыть технические характеристики смартфонов, то среди них можно увидеть такое определение, как «процессор».

Многим, даже технически неграмотным пользователям, данная деталь знакома и они имеют представление о том, какую функцию он выполняет. Однако стоящие рядом с ним слова «двухъядерный» или «четырехъядерный» вызывают у многих недоумение.

В нашей статье мы поговорим о том, что такое ядро процессора в смартфоне, за что оно отвечает и правдиво ли мнение, что чем больше ядер в процессоре, тем мощнее телефон.

Что такое процессор в телефоне?

  • Прежде чем переходить к ядрам, для начала нужно понять, что такое процессор. Процессор – это миниатюрное устройство, которое отвечает за математические, логические и управленческие операции, внесённые человеком в машинный код.
  • Как правило, процессор выполнен в виде одной интегральной схемы, основу которой составляет кремниевый чип и огромное количество, расположенных на нем, транзисторов. В некоторых случаях процессор может состоять из двух и более специализированных микросхем.

  • Скорость или же мощность процессора напрямую зависит от общего числа транзисторов, нанесенных на кремниевый чип. Мощность процессора измеряется в тактовой частоте (Ггц ) и чем больше на кремниевом чипе нанесено транзисторов, тем выше будет тактовая частота процессора (мощность).
  • Однако, идущий по транзисторам ток, имеет свойство нагревать кремниевый чип, который под воздействием высоких температур выходит из строя. И чем больше транзисторов располагается на чипе, тем быстрее он нагревается и достигает своего теплового предела. Как раз для того, чтобы избежать перегрева, были придуманы процессоры с двумя и более ядрами.

Что такое ядра процессора в смартфоне и за что они отвечают?

  • Ядро – это основной модуль процессора, где обрабатывается вся информация и производятся расчеты. Если провести аналогию с человеческим организмом, то процессор является мозгом, а ядра – его полушариями. У человеческого мозга их два, а вот количество ядер процессора смартфона может достигать восьми штук.

  • Выше мы говорили о том, что мощность процессора зависит от количества нанесенных на него транзисторов и упомянули о перегреве. Наличие нескольких ядер в процессоре нужно для того, чтобы распределить между ними нагрузку на процессор и снизить теплоотдачу.
  • Таким образом, если одно ядро не справляется с потоком обрабатываемой информации, автоматически активируется второе ядро и возьмет часть работы на себя, тем самым предотвратив перегрев. Наличие в процессоре двух или более ядер позволяет нанести на него больше транзисторов и соответственно увеличить его мощность или скорость обработки данных.

На что влияет количество ядер в смартфоне?

  • Как мы уже выяснили, ядра помогают разгрузить процессор, снизить теплоотдачу и увеличить его скорость. Таким образом, чем больше в установленном на ваш телефон процессоре ядер, тем больше действий Вы сможете выполнять одновременно.

  • Например, если Вы, имея смартфон с одноядерным процессором, играете на нем в игру и захотите параллельно запустить какое-нибудь второе приложение, то ваша игра будет автоматически закрыта, так как процессор не может одновременно обработать такой большой поток данных.
  • Если же Вы сделаете то же самое на двухъядерном процессоре, то одно его ядро возьмет на себя работу игры, а второе будет обрабатывать запущенное приложение.
  • Также существуют тяжелые приложения, которые загружают сразу несколько ядер процессора. Их называют многопотоковыми. К ним относятся тяжелые игры и некоторые графические редакторы. Если попытаться запустить такое приложение на смартфоне с одноядерным процессором, то в лучшем случае оно просто не запустится. Наихудшим раскладом может стать полное зависание и перегрев устройства.

Какое самое большое количество ядер в смартфоне?

  • На сегодняшний день в мобильные телефоны и планшеты устанавливаются процессоры с максимальным количеством ядер в десять штук. Наверняка их могло бы быть и больше, однако разработчики не видят в этом необходимости в данное время.
  • Но, несмотря на точку зрения производителей процессоров, многие аналитики и эксперты придерживаются мнения, что будущее гаджетов стоит за их многозадачностью, которая невозможна без наличия многоядерных процессоров.

Сколько ядер в телефоне, смартфоне лучше?

  • Многие покупатели придерживаются мнения, что восьмиядерный процессор в два раза мощнее четырехъядерного. Если рассматривать его с точки зрения логики и не вдаваться в подробности устройства процессора, то восемь больше четырех, а значит и мощность гаджета будет выше. Однако данное мнение является в корне ошибочным.
  • Как было уже сказано, количество ядер процессора увеличивает скорость работы смартфона за счет равномерного распределения выполняемых одновременно процессов. Но большинство существующих на сегодняшний день мобильных приложений являются однопотоковыми и одновременно могут использовать только одно ядро процессора. В редких случаях два.

  • Многоядерные процессоры нужны только в том случае, если Вы играете в тяжелые игры, которые дают высокую нагрузку на процессор и способны использовать одновременно четыре ядра и более. Таких игр на сегодняшний день единицы, так как разработчики игровой индустрии стараются оптимизировать свою продукцию даже под слабые устройства с целью увеличения продаж.
  • Дать четкого ответа на вопрос в заголовке нельзя. Всё зависит от ваших потребностей и технических характеристик устройства в целом. Если Вам нужен хороший смартфон для игр, то стоит обращать внимание не только на количество ядер процессора, но и на его тактовую частоту, а также объем оперативной памяти.

  • Например, смартфон с 4 ГБ оперативной памяти, четырёхъядерным процессором и тактовой частотой 1.7 Ггц будет гораздо быстрее, чем аналогичный смартфон с восьмиядерным процессором и тактовой частотой 1 Ггц .
  • Также немаловажную роль играет и устройство процессора. У каждого производителя структура процессора выполнена по-разному. Например, процессоры от производителей Atom и Snapdragon с одинаковым количеством ядер и тактовой частотой будут отличаться между собой производительностью.

ВИДЕО: Почему больше ядер в мобильном процессоре не значит лучше?

Современная компьютерная индустрия не стоит на месте. Уже практически каждый компьютер укомплектован многоядерными процессорами. Но ведь еще не каждый знает, в чем отличие их от одноядерных аналогов, которые остаются в прошлом. Иногда при покупке человек стремится купить новинку, при этом он не осознает ее значимость и тратит деньги на вещь, которая ему не принесет существенной пользы.
Чтобы понять необходимость покупки процессора с одним или двумя ядрами необходимо осознавать разницу двух вариантов, в каких случаях каждый из них лучше.

Особенности строения одноядерных процессоров

Всем известно, что мощность и скорость работы всего персонального компьютера в первую очередь зависит именно от центрального процессора. Поэтому, чем частота работы процессора выше, тем быстрее происходит выполнение команд пользователя. Операции над данными производит именно ядро в процессоре.

При высокой частоте скорость выполнения одной команды существенная, поэтому пользователю даже при одноядерном процессоре кажется, что программы выполняются параллельно. В действительности все программы встают в очередь, которая движется с очень высокой скоростью.

Особенностью одноядерных процессоров по архитектуре можно считать:

  • Структуру с полным разделением команд и данных.
  • Скалярная архитектура, которая позволяет выполнять параллельно несколько команд в различных устройствах.
  • Изменение последовательности команд динамического типа, когда работает принцип опережения.
  • Использование команд происходит по типу конвейера.
  • Направление ветвей выполнения предсказуемо.

Хочется отметить, несмотря на то, что все больше появляется двухъядерных процессоров, одноядерные варианты постоянно дорабатываются и усовершенствуются. Поэтому некоторые модели процессоров с одним ядром по своей производительности не всегда уступают двухъядерному последователю.

Особенности работы двухъядерных процессоров

Если, в общем, рассказывать о работе процессора с двумя ядрами в сравнении с одноядерным собратом, то можно пояснить все простым примером. Например, пользователь копирует файлы, а при этом решил посмотреть фильм. Ему кажется, что обе операции проводятся одновременно, но при работе одноядерного процессора эти действия идут последовательно, так как частота выполнения команд очень высокая, то и создается такое ощущение. Но при наличии двухъядерного процесса эти операции действительно выполняются одновременно.

Стоит отметить, что по своей архитектуре двухъядерный процессор схож со строением симметричных мультипроцессоров, когда на одной плате используется два процессора. Существуют, конечно, определенные отличия, но принцип работы схож.

Наиболее эффективно двухъядерные процессоры показывают себя при работе с многопоточными приложениями, именно здесь получается наивысшая производительность. Так как многочисленные задачи распределяются между двумя ядрами для выполнения. Такое распределение позволяет снизить потребление электроэнергии. Ведь именно этот фактор тормозит развитие одноядерных процессоров.

В чем отличия двухъядерного процессора

При изучении архитектуры строения как одноядерных, так и двухъядерных процессоров можно выделить большой список различий:

  • Если не запускать сложных многопоточных приложений или несколько одновременно, то различия в работе процессора с одним ядром или двумя, будут не так ощутимы и заметны.
  • В процессоре с двумя ядрами присутствует также разделенная кэш память.
  • При наличии двухъядерного процессора существует ощутимый плюс, так как при отказе одного ядра, второе ядро будет забирать всю нагрузку только на себя.
  • Двухъядерный процессор имеет большую кэш память и частоту.

Стоит заметить, что не всегда двухъядерный процессор в домашних условиях может показать себя в полном объеме, так как многие созданные приложения не адаптированы к такому центральному процессору. Следует заметить, что из-за наличия двух ядер процессор имеет 64-битную структуру. А многие современные программы рассчитаны на 32-битную структуру, и повышения скорости работы от них не стоит ожидать.

Преимущества использования двухъядерных процессоров

Зная особенности структуры и существенные отличия процессоров с одним и двумя ядрами можно выделить основные преимущества использования двухъядерных процессоров:

  1. Быстрая работа браузера при загрузке и отображении.
  2. Высокая производительность в игровых приложениях.
  3. При работе в многозначном режиме увеличивается скорость работы нескольких потоков.
  4. Высокое быстродействие и плавность работы.
  5. Снижение энергопотребления при увеличении производительности.

В заключение можно сделать вывод, что процессор с одним ядром или двумя имеет существенные различия, как в результате работы, так и в своей архитектуре.

Конечно, понятно, что процессор с двумя ядрами и более будет более производительным. Для домашнего пользования в принципе не критически приобретать компьютер и с одним процессором. Но если есть финансовые возможности приобрести компьютер, в конфигурации которого два процессора, то стоит покупать. Ведь информационный мир не стоит на месте. Программы дорабатываются, техника усовершенствуется. С каждым днем все большее число программных продуктов ориентировано на работу с 64-битными системами.

Модуль поиска не установлен.

Одноядерный или двухъядерный?

Виктор Куц

Самым значимым событием последнего времени в области микропроцессоров стало появление в широком доступе CPU, оснащенных двумя вычислительными ядрами. Переход на двухъядерную архитектуру обусловлен тем, что традиционные методы по увеличению производительности процессоров полностью исчерпали себя - процесс наращивания их тактовых частот в последнее время застопорился.

К примеру, в последний год перед появлением двухъядерных процессоров компания Intel смогла увеличить частоты своих CPU на 400 МГц, а AMD и того меньше - всего лишь на 200 МГц. Другие же методы повышения производительности, такие как увеличение скорости шины и размера кэш-памяти, также утратили былую эффективность. Таким образом, внедрение двухъядерных процессоров, обладающих двумя процессорными ядрами в одном чипе и разделяющими между собой нагрузку, в настоящее время оказалось наиболее логичным шагом на сложном и тернистом пути наращивания производительности современных компьютеров.

Что же представляет собой двухъядерный процессор? В принципе, двухъядерный процессор представляет собой SMP-систему (Symmetric MultiProcessing - симметричная многопроцессорная обработка; термин, обозначающий систему с несколькими равноправными процессорами) и по сути своей не отличается от обыкновенной двухпроцессорной системы, состоящей из двух независимых процессоров. Таким образом, мы получаем все преимущества двухпроцессорных систем без необходимости использования сложных и очень дорогих двухпроцессорных материнских плат.

До этого компанией Intel уже была произведена попытка распараллелить выполняемые инструкции - речь идет о технологии HyperThreading, обеспечивающей разделение ресурсов одного "физического" процессора (кэш, конвейер, исполнительные устройства) между двумя "виртуальными" процессорами. Прирост производительности (в отдельных, оптимизированных для HyperThreading приложениях) при этом составлял примерно 10-20%. Тогда как полноценный двухъядерный процессор, включающий в себя два "честных" физических ядра, обеспечивает прирост производительности системы на все 80-90% и даже больше (естественно, при полном задействовании возможностей обоих его ядер).

Главным инициатором в продвижении двухъядерных процессоров выступила компания AMD, которая в начале 2005 года выпустила первый серверный двухъядерный процессор Opteron. Что касается настольных процессоров, то здесь инициативу перехватила компания Intel, примерно в это же время анонсировавшая процессоры Intel Pentium D и Intel Extreme Edition. Правда, анонс аналогичной линейки процессоров Athlon64 X2 производства AMD запоздал всего лишь на считанные дни.

Двухъядерные процессоры Intel

Первые двухъядерные процессоры Intel Pentium D семейства 8хх были основаны на ядре Smithfield, которое является ничем иным, как двумя ядрами Prescott, объединенными на одном полупроводниковом кристалле. Там же размещается и арбитр, который следит за состоянием системной шины и помогает разделять доступ к ней между ядрами, каждое из которых имеет собственную кэш-память второго уровня объемом по 1 Мбайт. Размер такого кристалла, выполненного по 90-нм техпроцессу, достиг 206 кв. мм, а количество транзисторов приближается к 230 миллионам.

Для продвинутых пользователей и энтузиастов компания Intel предлагает процессоры Pentium Extreme Edition, отличающиеся от Pentium D поддержкой технологии HyperThreading (и разблокированным множителем), благодаря чему они определяются операционной системой как четыре логических процессора. Все остальные функции и технологии обоих процессоров полностью одинаковы. Среди них можно выделить поддержку 64-битного набора команд EM64T (x86-64), технологии энергосбережения EIST (Enhanced Intel SpeedStep), C1E (Enhanced Halt State) и TM2 (Thermal Monitor 2), а также функцию защиты информации NX-bit. Таким образом, немалая ценовая разница между процессорами Pentium D и Pentium EE является по большей части искусственной.

Что касается совместимости, то процессоры на ядре Smithfield потенциально могут быть установлены в любую LGA775 материнскую плату, лишь бы она соответствовала требованиям Intel к модулю питания платы.

Но первый блин, как обычно, вышел комом - во многих приложениях (большинство из которых не оптимизированы под многопоточность) двухъядерные процессоры Pentium D не только не превосходили одноядерные Prescott, работающие на той же тактовой частоте, но иногда и проигрывали им. Очевидно, проблема кроется во взаимодействии ядер через процессорную шину Quad Pumped Bus (при разработке ядра Prescott не было предусмотрено масштабирование его производительности путем увеличения количества ядер).

Устранить недостатки первого поколения двухъядерных процессоров Intel были призваны процессоры на 65-нм ядре Presler (два отдельные ядра Cedar Mill, размещенные на одной подложке), появившиеся в самом начале нынешнего года. Более "тонкий" техпроцесс позволил уменьшить площадь ядер и их энергопотребление, а также повысить тактовые частоты. Двухъядерные процессоры на ядре Presler получили наименование Pentium D с индексами 9хх. Если сравнивать процессоры Pentium D 800-й и 900-й серий, то кроме ощутимого снижения энергопотребления новые процессоры получили удвоение кэш-памяти второго уровня (по 2 Мбайт на ядро вместо 1 Мбайт) и поддержку перспективной технологии виртуализации Vanderpool (Intel Virtualization Technology). Кроме того, был выпущен процессор Pentium Extreme Edition 955 с включенной технологией HyperThreading и работающий на частоте системной шины 1066 МГц.

Официально процессоры на ядре Presler с частотой шины 1066 МГц совместимы только с материнскими платами на чипсетах серии i965 и i975X, тогда как 800-мегагерцевые Pentium D в большинстве случаев заработают на всех системных платах, поддерживающих эту шину. Но, опять же, встает вопрос о питании этих процессоров: термопакет Pentium EE и Pentium D, за исключением младшей модели, составляет 130 Вт, что почти на треть больше, чем у Pentium 4. Согласно заявлениям самой Intel, стабильная работа двухъядерной системы возможна лишь при использовании блоков питания мощностью не менее 400 Вт.

Наиболее эффективными современными десктопными двухъядерными процессорами Intel, без сомнения, являются Intel Core 2 Duo и Core 2 eXtreme (ядро Conroe). Их архитектура развивает базовые принципы архитектуры семейства P6, тем не менее, количество принципиальных нововведений столь велико, что впору говорить о новом, 8-м поколении процессорной архитектуры (P8) компании Intel. Несмотря на более низкую тактовую частоту, они заметно превосходят процессоры семейства Р7 (NetBurst) по производительности в подавляющем большинстве применений - в первую очередь за счет увеличения числа операций, выполняемых в каждом такте, а также за счет снижения потерь, обусловленных большой длиной конвейера P7.

Десктопные процессоры линейки Core 2 Duo выпускаются в нескольких вариантах:
- серия E4xxx - FSB 800 МГц, общий для обоих ядер L2-кэш 2 Мбайт;
- серия E6ххх - FSB 1066 МГц, размер кэша 2 или 4 Мбайт;
- серия X6ххх (eXtreme Edition) - FSB 1066 МГц, размер кэша 4 Мбайт.

Буквенный шифр "E" обозначает диапазон энергопотребления от 55 до 75 ватт, "X" - выше 75 ватт. Core 2 eXtreme отличается от Core 2 Duo лишь только повышенной тактовой частотой.

Все процессоры Conroe используют хорошо отработанные процессорную шину Quad Pumped Bus и разъем LGA775. Что, однако, совсем не означает совместимости со старыми материнскими платами. Помимо поддержки тактовой частоты 1067 МГц, материнские платы для новых процессоров должны содержать новый модуль регулирования напряжения (VRM 11). Этим требованиям соответствуют в основном обновленные версии материнских плат, выполненных на базе чипсетов Intel 975 и 965 серий, а также NVIDIA nForce 5xx Intel Edition и ATI Xpress 3200 Intel Edition.

В ближайшие два года процессоры Intel всех классов (мобильные, десктопные и серверные) будут базироваться на архитектуре Intel Core, а основное развитие будет идти в направлении увеличения числа ядер на кристалле и усовершенствования их внешних интерфейсов. В частности, для рынка настольных ПК таким процессором станет Kentsfield - первый четырехъядерный процессор Intel для сегмента высокопроизводительных настольных ПК.

Двухъядерные процессоры AMD

В линейке двухъядерных процессоров AMD Athlon 64 X2 используются два ядра (Toledo и Manchester) внутри одного кристалла, произведенные по 90-нм техпроцессу с использованием технологии SOI. Каждое из ядер Athlon 64 X2 обладает собственным набором исполнительных устройств и выделенной кэш-памятью второго уровня, контроллер памяти и контроллер шины HyperTransport у них общие. Различия между ядрами - в размере кэша второго уровня: у Toledo кэш L2 имеет объем 1 Мбайт на каждое ядро, а у Manchester этот показатель вдвое меньше (по 512 Кбайт). Все процессоры имеют кэш-память первого уровня 128 Кбайт, их максимальное тепловыделение не превышает 110 Вт. Ядро Toledo состоит примерно из 233,2 млн. транзисторов и имеет площадь около 199 кв. мм. Площадь ядра Manchester заметно меньше - 147 кв. мм., количество транзисторов составляет 157 млн.

Двухъядерные процессоры Athlon64 X2 унаследовали от Athlon64 поддержку технологии энергосбережения Cool`n`Quiet, набор 64-битных расширений AMD64, SSE - SSE3, функцию защиты информации NX-bit.

В отличие от двухъядерных процессоров Intel, работающих только с памятью DDR2, Athlon64 Х2 способны работать как с памятью типа DDR400 (Socket 939), обеспечивающей предельную пропускную способность в 6,4 Гбайт/с, так и с DDR2-800 (Socket AM2), пиковая пропускная способность которой составляет 12,8 Гбайт/с.

На всех достаточно современных материнских платах процессоры Athlon64 X2 работают без каких-либо проблем - в отличие от Intel Pentium D они не предъявляют каких-либо специфических требований к дизайну модуля питания материнской платы.

До самого последнего времени наиболее производительными среди десктопных процессоров считались AMD Athlon64 X2, однако с выходом Intel Core 2 Duo ситуация в корне изменилась - последние стали безусловными лидерами, особенно в игровых и мультимедийных применениях. Кроме того, новые процессоры Intel имеют пониженное энергопотребление и гораздо более эффективные механизмы управления питанием.

Такое положение дел компанию AMD не устроило, и в качестве ответного хода она анонсировала выпуск в середине 2007 года нового 4-ядерного процессора с улучшенной микроархитектурой, известного под названием K8L. Все его ядра будут иметь раздельные L2-кэши по 512 Кбайт и один общий кэш 3-го уровня размером 2 Мбайта (в последующих версиях процессора L3-кэш может быть увеличен). Более подробно перспективная архитектура AMD K8L будет рассмотрена в одном из ближайших номеров нашего журнала.

Одно ядро или два?

Даже беглый взгляд на сегодняшнее состояние рынка десктопных процессоров свидетельствует о том, что эпоха одноядерных процессоров постепенно уходит в прошлое - оба ведущих мировых производителя перешли на выпуск в основном мультиядерных процессоров. Однако программное обеспечение, как это не раз случалось и раньше, пока что отстает от уровня развития "железа". Ведь для того чтобы полностью задействовать возможности несколько процессорных ядер, программное обеспечение должно уметь "разбиваться" на несколько параллельных потоков, обрабатываемых одновременно. Только при таком подходе появляется возможность распределить нагрузки по всем доступным вычислительным ядрам, снижая время вычислений сильнее, чем это можно было сделать путем повышения тактовой частоты. Тогда как подавляющее большинство современных программ не способны использовать все возможности, предоставляемые двухъядерными или, тем более, многоядерными процессорами.

Какие же типы пользовательских приложений наиболее эффективно поддаются распараллеливанию, то есть без особой переработки кода программ позволяют выделить несколько задач (программных потоков), способных исполняться параллельно и, таким образом, загрузить работой сразу несколько процессорных ядер? Ведь только такие приложения обеспечивают сколь-нибудь заметное увеличение производительности от внедрения многоядерных процессоров.

Наибольший выигрыш от мультипроцессорности получают приложения, изначально допускающие естественную паралеллизацию вычислений с разделением данных, например, пакеты реалистичного компьютерного рендеринга - 3DMax и ему подобные. Также можно ожидать хорошего прироста производительности от многопроцессорности в приложениях по кодированию мультимедийных файлов (аудио и видео) из одного формата в другой. Кроме того, хорошо поддаются распараллеливанию задачи редактирования двумерных изображений в графических редакторах вроде популярного Photoshop"а.

Недаром приложения всех перечисленных выше категорий широко используются в тестах, когда хотят показать преимущества виртуальной многопроцессорности Hyper-Threading. А уж о реальной многопроцессорности и говорить нечего.

А вот в современных трехмерных игровых приложениях какого-либо серьезного прироста скорости от нескольких процессоров ожидать не следует. Почему? Потому, что типичную компьютерную игру так просто не распараллелить на два или более процессов. Поэтому второй логический процессор в лучшем случае будет заниматься выполнением лишь вспомогательных задач, что не даст практически никакого прироста производительности. А разработка многопоточной версии игры с самого начала достаточно сложна и требует немалых трудозатрат - порой гораздо больших, чем для создания однопоточной версии. Трудозатраты эти, кстати, могут еще и не окупиться с экономической точки зрения. Ведь производители компьютерных игр традиционно ориентируются на наиболее массовую часть пользователей и начинают использовать новые возможности компьютерного "железа" только в случае его широкой распространенности. Это хорошо заметно на примере использования разработчиками игр возможностей видеокарт. Например, после того как появилась новые видеочипы с поддержкой шейдерных технологий, разработчики игр еще долгое время игнорировали их, ориентируясь на возможности урезанных массовых решений. Так что даже продвинутые игроки, купившие самые "навороченные" видеокарты тех лет, так и не дождались нормальных игр, использующих все их возможности. Примерно аналогичная ситуация с двухъядерными процессорами наблюдается сегодня. Сегодня не так много игр, толком задействующих даже технологию HyperThreading, несмотря на то, что уже не один год вовсю выпускаются массовые процессоры с ее поддержкой.

В офисных приложениях ситуация не столь однозначная. Прежде всего, программы такого класса редко работают в одиночку - гораздо чаще встречается ситуация, когда на компьютере запущено нескольких работающих параллельно офисных приложений. Например, пользователь работает с текстовым редактором, и одновременно происходит загрузка web-сайта в браузер, а также в фоновом режиме осуществляется сканирование на вирусы. Очевидно, что несколько работающих приложений позволяют без особого труда задействовать несколько процессоров и получить прирост производительности. Тем более что все версии Windows XP, включая Home Edition (которой изначально было отказано в поддержке мультиядерных процессоров), уже сейчас способны использовать преимущества двухъядерных процессоров, распределяя программные потоки между ними. Обеспечивая тем самым высокую эффективность исполнения многочисленных фоновых программ.

Таким образом, можно ожидать некоторого эффекта даже от неоптимизированных офисных приложений, если они запускаются параллельно, но вот стоит ли такой прирост производительности существенного увеличения стоимости двухъядерного процессора, понять сложно. Кроме того, определенным недостатком двухъядерных процессоров (особенно это касается процессоров Intel Pentium D) является то, что приложения, производительность которых ограничена не вычислительной способностью самого процессора, а скоростью доступа к памяти, могут не так сильно выиграть от наличия нескольких ядер.

Заключение

Несомненно, что будущее определенно за многоядерными процессорами, однако сегодня, когда большая часть существующего программного обеспечения не оптимизирована под новые процессоры, достоинства их не столь очевидны, как пытаются показать производители в своих рекламных материалах. Да, чуть позже, когда произойдет резкое увеличение количества приложений, поддерживающих многоядерные процессоры (в первую очередь это касается 3D-игр, в которых CPU нового поколения помогут существенно разгрузить графическую систему), приобретение их будет целесообразно, но сейчас... Давно известно, что покупка процессоров "на вырост" - далеко не самое эффективное вложение средств.

С другой стороны, прогресс стремителен, а для нормального человека ежегодная смена компьютера - это, пожалуй, перебор. Таким образом, всем обладателям достаточно современных систем на базе одноядерных процессоров в ближайшее время волноваться особо не стоит - ваши системы еще какое-то время будут "на уровне", тогда как тем, кто собирается приобрести новый компьютер, мы бы все-таки порекомендовали обратить свое внимание на относительно недорогие младшие модели двухъядерных процессоров.


* всегда актуальные вопросы, на что стоит обращать внимание при выборе процессора, чтобы не ошибиться.

Наша цель в данной статье — описать все факторы влияющие на производительность процессора и другие эксплуатационные характеристики.

Наверняка ни для кого не секрет, что процессор – является главной вычислительной единицей компьютера. Можно даже сказать – самая главная часть компьютера.

Именно он занимается обработкой практически всех процессов и задач, которые происходят в компьютере.

Будь то — просмотр видео, музыка, интернет сёрфинг, запись и чтение в памяти, обработка 3D и видео, игр. И многого другого.

Поэтому к выбору Ц ентрального П роцессора, стоит отнестись очень тщательно. Может получиться ситуация, что вы решили поставить мощную видеокарту и не соответствующий её уровню процессор. В этом случае процессор, не будет раскрывать потенциал видеокарты, что будет тормозить её работу. Процессор будет полностью загружен и буквально кипеть, а видеокарта будет ожидать своей очереди, работая на 60-70% от своих возможностей.

Именно поэтому, при выборе сбалансированного компьютера, не стоит пренебрегать процессором в пользу мощной видеокарты. Мощности процессора должно быть достаточно для раскрытия потенциала видеокарты, иначе это просто выброшенные деньги.

Intel vs. AMD

*догонялки навсегда

Корпорация Intel , располагает огромными человеческими ресурсами, и почти неисчерпаемыми финансами. Многие инновации в полупроводниковой индустрии и новые технологии идут именно из этой компании. Процессоры и разработки Intel , в среднем на 1-1,5 года опережают наработки инженеров AMD . Но как известно, за возможность обладать самыми современными технологиями – приходится платить.

Ценовая политика процессоров Intel , основывается как на количестве ядер , количестве кэша , но и на «свежести» архитектуры , производительности на такт ватт , техпроцесса чипа . Значение кэш-памяти, «тонкости техпроцесса» и другие важные характеристики процессора рассмотрим ниже. За обладание такими технологии как и свободного множителя частоты, тоже придётся выложить дополнительную сумму.

Компания AMD , в отличии от компании Intel , стремится к доступности своих процессоров для конечного потребителя и к грамотной ценовой политике.

Можно даже сказать, что AMD – «Народная марка ». В её ценниках вы найдёте то, что вам нужно по очень привлекательной цене. Обычно через год, после появления новой технологии у компании Intel , появляется аналог технологии от AMD . Если вы не гонитесь за самой высокой производительностью и больше обращаете внимание на ценник, чем на наличие передовых технологий, то продукция компании AMD – именно для вас.

Ценовая политика AMD , больше основывается на количестве ядер и совсем немного — на количестве кэш памяти, наличии архитектурных улучшений. В некоторых случаях, за возможность обладать кэш памятью третьего уровня, придётся немного доплатить (Phenom имеет кэш память 3 уровня, Athlon довольствуется только ограниченной, 2 уровня). Но иногда AMD «балует» своих фанатов возможность разблокировать более дешёвые процессоры, до более дорогих. Разблокировать можно ядра или кэш-память. Улучшить Athlon до Phenom . Такое возможно благодаря модульной архитектуре и при недостатке некоторых более дешёвых моделей, AMD просто отключает некоторые блоки на кристалле более дорогих (программно).

Ядра – остаются практически неизменными, отличается только их количество (справедливо для процессоров 2006-2011 годов). За счёт модульности своих процессоров, компания отлично справляется со сбытом отбракованных чипов, которые при отключении некоторых блоков, становятся процессором из менее производительной линейки.

Компания много лет работала над совершенно новой архитектурой под кодовым именем Bulldozer , но на момент выхода в 2011 году, новые процессоры показали не самую лучшую производительность. AMD грешила на операционные системы, что они не понимают архитектурных особенностей сдвоенных ядер и «другой многопоточности».

Со слов представителей компании, следует ждать особых исправлений и заплаток, чтобы ощутить всю производительность данных процессоров. Однако в начале 2012 года, представители компании отложили выход обновления для поддержки архитектуры Bulldozer на вторую половину года.

Частота процессора, количество ядер, многопоточность.

Во времена Pentium 4 и до него – частота процессора , была главным фактором производительности процессора при выборе процессора.

Это не удивительно, ведь архитектуры процессоров — специально разрабатывались для достижения высокой частоты, особенно сильно это отразилось как раз в процессоре Pentium 4 на архитектуре NetBurst . Высокая частота, была не эффективна при том длинном конвейере, что был использован в архитектуре. Даже Athlon XP частотой 2Ггц , по уровню производительности был выше чем Pentium 4 c 2,4Ггц . Так что, это был чистой воды маркетинг. После этой ошибки, компания Intel осознала свои ошибки и вернулась на сторону добра начала работать не над частотной составляющей, а над производительностью на такт. От архитектуры NetBurst пришлось отказаться.

Что же нам даёт многоядерность ?

Четырёх-ядерный процессор с частотой 2,4 Ггц , в много-поточных приложениях, теоретически будет примерным эквивалентом, одноядерного процессора с частотой 9,6Ггц или 2-х ядерному процессору с частотой 4,8 Ггц . Но это только теоретически . Практически же, два двухъядерных процессора в двух сокетной материнской плате, будут быстрее одного 4-ядерного, на той же частоте функционирования. Ограничения по скорости шины и задержки памяти дают о себе знать.

* при условии одинаковых архитектур и количества кэш памяти

Многоядерность, даёт возможность выполнять инструкции и вычисления по частям. К примеру нужно выполнить три арифметических действия. Первые два выполняются на каждом из ядер процессора и результаты складываются в кэш-память, где с ними может быть выполнено следующее действие любым из свободных ядер. Система очень гибкая, но без должной оптимизации может и не работать. Потому очень важна оптимизация под многоядерность для архитектуры процессоров в среде ОС.

Приложения, которые «любят» и используют многопоточность: архиваторы , плееры и кодировщики видео , антивирусы , программы дефрагментаторы , графические редакторы , браузеры , Flash .

Так же, к «любителям» многопоточности, можно отнести такие операционные системы как Windows 7 и Windows Vista , а так же многие ОС , основанные на ядре Linux , которые работают заметно быстрее при наличии многоядерного процессора.

Большинству игр , бывает вполне достаточно 2-х ядерного процессора на высокой частоте. Сейчас однако, выходит всё больше игр «заточенных» под многопоточность. Взять хотя бы такие SandBox игры, как GTA 4 или Prototype , в которые на 2-х ядерном процессоре с частотой ниже 2,6 Ггц – комфортно себя не чувствуешь, фреймрейт проваливается ниже 30 кадров в секунду. Хотя в данном случае, скорее всего причиной таких казусов является «слабая» оптимизация игр, недостаток времени или «не прямые» руки тех, кто переносил игры с консолей на PC .

При покупке нового процессора для игр, сейчас стоит обращать внимание на процессоры с 4-мя и более ядрами. Но всё же, не стоит пренебрегать 2-х ядерными процессорами из «верхней категории». В некоторых играх, данные процессоры чувствуют себя порой лучше, чем некоторые многоядерные.

Кэш память процессора.

– это выделенная область кристалла процессора, в которой обрабатываются и хранятся промежуточные данные между процессорными ядрами, оперативной памятью и другими шинами.

Она работает на очень высокой тактовой частоте (обычно на частоте самого процессора), имеет очень высокую пропускную способность и процессорные ядра работают с ней напрямую (L1 ).

Из-за её нехватки , процессор может простаивать в трудоёмких задачах, ожидая пока в кэш поступят новые данные для обработки. Так же кэш-память служит для записи часто повторяющихся данных, которые при необходимости могут быть быстро восстановлены без лишних вычислений, не заставляя процессор тратить время на них снова.

Производительности, так же добавляет факт, если кэш память объединённая, и все ядра равноправно могут использовать данные из неё. Это даёт дополнительные возможности для многопоточной оптимизации.

Такой приём, сейчас используется для кэш памяти 3-го уровня . У процессоров Intel существовали процессоры с объединённой кэш памятью 2-го уровня (C2D E 7*** , E 8*** ), благодаря которым и появился данный способ увеличить многопоточную производительность.

При разгоне процессора, кэш память может стать слабым местом, не давая разогнать процессор больше, чем её предельная частота функционирования без ошибок. Однако плюсом является то, что она будет работать на той же частоте, что и разогнанный процессор.

В общем, чем больше кэш памяти, тем быстрее процессор. В каких именно приложениях?

Во всех приложениях, где используется множество числовых данных с плавающей запятой, инструкций и потоков, кэш память активно используется. Кэш память очень любят архиваторы , кодировщики видео , антивирусы и графические редакторы и т.д.

Благоприятно к большому количеству кэш-памяти относятся игры . Особенно стратегии, авто-симуляторы, RPG, SandBox и все игры, где есть много мелких деталей, частиц, элементов геометрии, потоков информации и физических эффектов.

Кэш память играет очень немалую роль в раскрытии потенциала систем с 2-мя и более видеокартами. Ведь какая то доля нагрузки, ложится на взаимодействие ядер процессора как между собой, так и для работы с потоками нескольких видео-чипов. Именно в этом случае важна организация кэш — памяти, и очень полезна кэш память 3-го уровня большого объёма.

Кэш память, всегда оснащается защитой от возможных ошибок (ECC ), при обнаружении которых, ведётся их исправление. Это очень важно, ведь маленькая ошибочка в кэш памяти, при обработке может превратиться в гигантскую, сплошную ошибку, от которой «ляжет» вся система.

Фирменные технологии.

(гипер-поточность, HT )–

впервые технология была применена в процессорах Pentium 4 , но работала не всегда корректно и зачастую больше тормозила процессор, чем ускоряла. Причиной был слишком длинный конвейер и не доведённая до ума система предсказания ветвлений. Применяется компанией Intel , аналогов технологии пока нет, если не считать аналогом то? что реализовали инженеры компании AMD в архитектуре Bulldozer .

Принцип системы таков, что на каждое физическое ядро, создаётся по два вычислительных потока , вместо одного. То есть, если у вас 4-х ядерный процессор с HT (Core i 7 ), то виртуальных потоков у вас 8 .

Прирост производительности достигается за счёт того, что в конвейер могут поступать данные уже в его середине, а не обязательно сначала. Если какие то блоки процессора, способные выполнить это действие простаивают, они получают задачу к выполнению. Прирост производительности не такой как у настоящих физических ядер, но сопоставимый(~50-75%, в зависимости от рода приложения). Довольно редко бывает, что в некоторых приложениях, HT отрицательно влияет на производительность. Связано это с плохой оптимизацией приложений под данную технологию, невозможность понять, что присутствуют потоки «виртуальные» и отсутствие ограничителей для нагрузки потоков равномерно.

Turbo Boost – очень полезная технология, которая увеличивает частоту функционирования наиболее используемых ядер процессора, в зависимости от уровня их загруженности. Очень полезна тогда, когда приложение не умеет использовать все 4 ядра, и загружает только одно или два, при этом их частота работы повышается, что частично компенсирует производительность. Аналогом данной технологии у компании AMD , является технология Turbo Core .

, 3 dnow ! инструкции . Предназначены для ускорения работы процессора в мультимедиа вычислениях (видео, музыка, 2D/3D графика и т.д.), а так же ускоряют работу таких программ как архиваторы, программы для работы с изображениями и видео (при поддержке инструкций данными программами).

3dnow ! – довольно старая технология AMD , которая содержит дополнительные инструкции по обработке мультимедиа контента, помимо SSE первой версии .

*А именно возможность потоковой обработки вещественных чисел одинарной точности.

Наличие самой новой версии – является большим плюсом, процессор начинает более эффективно выполнять определённые задачи при должной оптимизации ПО. Процессоры AMD носят похожие названия, но немного другие.

* Пример — SSE 4.1(Intel) — SSE 4A(AMD).

К тому же, данные наборы инструкций не идентичны. Это аналоги, в которых есть небольшие отличия.

Cool’n’Quiet, SpeedStep, CoolCore, Enchanced Half State(C1E) и т . д .

Данные технологии, при низкой нагрузке уменьшают частоту процессора, посредством уменьшения множителя и напряжения на ядре, отключения части КЭШа и т.д. Это позволяет процессору гораздо меньше греться и потреблять меньше энергии, меньше шуметь. Если понадобится мощность, то процессор вернётся в обычное состояние за доли секунды. На стандартных настройках Bios практически всегда включены, при желании их можно отключить, для уменьшения возможных «фризов» при переключении в 3D играх.

Некоторые из этих технологий, управляют скоростью вращения вентиляторов в системе. К примеру, если процессор не нуждается в усиленном отводе тепла и не нагружен, скорость вентилятора процессора уменьшается (AMD Cool’n’Quiet, Intel Speed Step ).

Intel Virtualization Technology и AMD Virtualization .

Эти аппаратные технологии позволяют с помощью специальных программ запускать несколько операционных систем сразу, без какой либо сильной потери в производительности. Так же, её используют для правильной работы серверов, ведь зачастую, на них установлена далеко не одна ОС.

Execute Disable Bit и No eXecute Bit технология, призванная защитить компьютер от вирусных атак и программных ошибок, которые могут вызвать крах системы посредством переполнения буфера .

Intel 64 , AMD 64 , EM 64 T – данная технология позволяет процессору работать как в ОС с 32-х битной архитектурой, так и в ОС с 64-х битной. Система 64 bit – с точки зрения выгоды, для рядового пользователя отличается тем, что в данной системе можно использовать более 3.25Гб оперативной памяти. В 32-х битных системах, использовать бо льший объём оперативной памяти не представляется возможным, из-за ограниченного объёма адресуемой памяти* .

Большинство приложений с 32-х bit архитектурой, можно запустить на системе с 64-х битной ОС.

* Что же поделать, если в далёком 1985 году, никто и подумать не мог о таких гигантских, по меркам того времени, объёмах оперативной памяти.

Дополнительно.

Пара слов о .

На этот пункт стоит обратить пристальное внимание. Чем тоньше техпроцесс, тем меньше процессор потребляет энергии и как следствие — меньше греется. И кроме всего прочего — имеет более высокий запас прочности для разгона.

Чем более тонкий техпроцесс, тем больше можно «завернуть» в чип (и не только) и увеличить возможности процессора. Тепловыделение и энергопотребление при этом тоже уменьшается пропорционально, благодаря меньшим потерям по току и уменьшению площади ядра. Можно заметить тенденцию, что с каждым новым поколением той же архитектуры на новом техпроцессе, растёт и энергопотребление, но это не так. Просто производители идут в сторону ещё большей производительности и перешагивают за черту тепловыделения прошлого поколения процессоров из-за увеличения числа транзисторов, которое не пропорционально уменьшению техпроцесса.

Встроенное в процессор .

Если вам не нужно встроенное видео ядро, то не стоит покупать процессор с ним. Вы получите только худший отвод тепла, лишний нагрев (не всегда), худший разгонный потенциал (не всегда), и переплаченные деньги.

К тому же те ядра, что встроены в процессор, годятся только для загрузки ОС, интернет сёрфинга и просмотра видео (и то не любого качества).

Тенденции на рынке все же меняются и возможность купить производительный процессор от Intel без видео ядра выпадает всё реже. Политика принудительного навязывание встроенного видео ядра, появилась с процессоров Intel под кодовым названием Sandy Bridge , основное новшество которых и было встроенное ядро на том же техпроцессе. Видео-ядро, находится совместно с процессором на одном кристалле , и не такое простое как в предыдущих поколениях процессоров Intel . Для тех кто его не использует, есть минусы в виде некоторой переплаты за процессор, смещённость источника нагрева относительно центра тепло — распределительной крышки. Однако есть и плюсы. Отключенное видео ядро, можно использовать для очень быстрой кодировки видео с помощью технологии Quick Sync вкупе со специальным, поддерживающим данную технологию ПО. В будущем, Intel обещает расширить горизонты использования встроенного видео ядра для параллельных вычислений.

Сокеты для процессоров. Сроки жизни платформ .


Intel ведёт грубую политику для своих платформ. Срок жизни каждой (срок начала и конца продаж процессоров для неё), обычно не превышает 1.5 — 2 года. К тому же, у компании есть несколько параллельно развивающихся платформ.

Компания AMD , ведёт противоположную политику совместимости. На её платформу на AM 3 , будут подходить все процессоры будущих поколений, поддерживающие DDR3 . Даже при выходе платформы на AM 3+ и более поздних, отдельно будут выпускаться либо новые процессоры под AM 3 , либо новые процессоры будут совместимы со старыми материнскими платами, и можно будет сделать безболезненный для кошелька апгрейд, поменяв только процессор (без смены мат.платы, ОЗУ и т.д.) и прошив материнской платы. Единственные нюансы несовместимости могут быть при смене типа , так как будет требоваться другой контроллёр памяти, встроенный в процессор. Так что совместимость ограниченная и поддерживается далеко не всеми материнскими платами. Но в целом, экономному пользователю или тем, кто не привык менять платформу полностью каждые 2 года — выбор производителя процессора понятен — это AMD .

Охлаждение процессора.

В стандартной комплектации, с процессором идёт BOX -овый кулер, который будет просто справляться со своей задачей. Представляет он из себя кусок алюминия с не очень высокой площадью рассеивания. Эффективные кулеры на тепловых трубках и закреплёнными на них пластинами, имеют конструкцию, предназначенную для высокоэффективного рассеивания тепла. Если вы не хотите слышать лишний шум от работы вентилятора, то вам стоит приобрести альтернативный, более эффективный кулер с тепловыми трубками, либо систему жидкостного охлаждения замкнутого или не замкнутого типа. Такие системы охлаждения, дополнительно дадут возможность разгона для процессора.

Заключение.

Все важные аспекты, влияющие на производительность и эксплуатационные характеристики процессора, были рассмотрены. Повторим, на что следует обращать внимание:

  • Выбрать производителя
  • Архитектура процессора
  • Техпроцесс
  • Частота процессора
  • Количество ядер процессора
  • Размер и тип кэш-памяти процессора
  • Поддержка технологий и инструкций
  • Качественное охлаждение

Надеемся, данный материал поможет вам разобраться и определиться в выборе соответствующего вашим ожиданиям процессора.

Статья постоянно обновляется. Последнее обновление 10.10.2013 р.

На данный момент рынок процессоров развивается настолько динамично, что уследить за всеми новинками и угнаться за прогрессом просто невозможно.
Но нам особо это и не нужно.
Нам, для того, чтобы купить процессор, достаточно знать для чего нужен будет компьютер, какие задачи он будет выполнять, и какую сумму денег мы готовы потратить.

На сегодняшний день заслуженными лидерами рынка процессоров являются две крупнейшие компании Intel и AMD .
Они предлагают широчайший выбор моделей любой ценовой категории. И от такого выбора процессоров разбегаются глаза.
А мы попробуем помочь Вам в этом разобраться, чтоб Вы смогли выбрать и купить производительный процессор и за нормальные деньги.

Начнём с того, что основными показателями производительности у процессора являются:

1) Архитектура процессора. Ведь новая архитектура будет всегда производительней чем предыдущая (несмотря на одинаковую частоту) .
2) Рабочая частота. Чем выше частота процессора тем он производительнее.
3) размер кэш-памяти второго и третьего уровней (L2 и L3);

Ну, а второстепенными показателями:
4) ;
5) технологический процесс;
6) набор инструкций;
и др.

Хотя сейчас находчивые консультанты в магазинах стараются больше акцентировать внимание на количестве ядер, напрямую связывая количество ядер со скоростью обработки данных и производительностью самого компьютера.

Количество ядер?

На сегодняшний день в продаже уже имеются восьми-, шести-, четырёх-, двух- и одноядерные процессоры от AMD , а также шести-, четырёх-, двух-, одноядерные от INTEL .
Но для сегодняшних программ и нужд домашнего геймера вполне достаточно двух- или четырёхъядерного процессора, работающего на высокой частоте.
Процессор с большим количеством ядер (6-8), понадобится лишь для программ кодирования видео и аудио контента, рендеринга изображений и архиваторов.

На данный момент оптимизация в игровой индустрии идет, в основном, на двухъядерные процессоры, только самое новое ПО и игры будут разрабатываться под многопоточные вычисления. Так что если Вы покупаете процессор для игр, то высокочастотный двухъядерный процессор окажется быстрее, чем низкочастотный, но трех- или четырехядерный процессор.

Внимание! У Вас нет прав для просмотра скрытого текста.


И выяснилось, что пока игрокам можно остановиться на современном двухъядерном процессоре, выбрав для себя решение с подходящим соотношением производительности и цены.
При этом стоит учитывать, что чипы Intel к тому же обладают технологией HyperThreading, позволяющей исполнять на каждом ядре две параллельные задачи. Операционная система видит 2х ядерные процессоры как четырёхядерные, а 4-х ядерные как восьмиядерные.
Процессоры с большим количеством ядер могут быть востребованы, в основном, в профессиональных приложениях и кодировании видео.
Восемь/шесть ядер пока не способна полностью загрузить ни одна игра.

Немного подытожим по ядрам.

Для офисного компьютера с головой хватит двухъядерного процессора нижнего ценового диапазона.
Типа Pentium, Celeron от Intel или A4, AthlonII X2 от AMD.

Для домашнего геймерского компьютера можно купить двухъядерный процессор Intel повышенной частоты или четырёхъядерный процессор от AMD.
Типа Core i3, Core i5 частотой от 3 ГГц Intel или A8, A10, Phenom™ II X4 с частотой от 3 ГГц AMD.

Ну, и для "заряженной" рабочей станции или геймерской системы hi-end понадобится хороший четырёхъядерный процессор нового поколения.
Типа Core i5, Core i7 от Intel, так как процессоры AMD очень редко используются в высокопроизводительных машинах.

О процессорах Core i3, Core i5 и Core i7 читаем в статьe:

Производительность процессора?

Как было указано выше, важным параметром является архитектура , на которой основан/выполнен процессор. Чем новее архитектура, тем "шустрее" показывает себя процессор в приложениях и играх. Так как любая последующая архитектура, что Intel, что AMD, будет всегда производительнее предыдущей.
На данный момент актуальны процессоры семейства Haswell (4-ое поколение) и Ivy Bridge (3-е поколение), а также процессоры архитектуры Piledriver семейства Richland, Trinity от AMD .

Также производительность процессора зависит от его рабочей частоты . Чем выше рабочая частота, тем производительней процессор. Актуальная рабочая частота ядер, на данный момент, от 3ГГц и выше.
Но при сравнении между собой процессоров AMD и INTEL при одинаковой тактовой частоте, не означает что они равны по производительности.
Особенности архитектуры позволяют процессорам INTEL показывать более высокую продуктивность даже с меньшей частотой, чем у конкурента.

Примечание: нельзя просто приплюсовать частоту двух ядер. Определяется, как два ядра по XX ГГц.

Ещё одним параметром производительности является размер, объём, сверхбыстрой кэш-памяти второго и третьего уровней L2 и L3 .
Это память с большой скоростью доступа, предназначенная для ускорения обращения к данным, которые обрабатывает процессор.
Чем больше объём кэш памяти, тем выше производительность.

Примечание: Core 2 Duo, Core 2 Quad имеют только L2, Core i5, Core i7 имеют L2+L3, процессоры AMD Athlon™ II X2 имеют только L2, Phenom™ II X4 имеют L2+L3.

У более ранних Core 2 показателем была частота шины FSB процессора. Частота шины, через которую процессор обменивается данными с оперативной памятью.
Чем выше частота FSB шины, тем выше производительность процессора.

Примечание: процессоры Core i3, Core i5 и Core i7 от компании Intel не имеют системной шины FSB, также как и в последних процессорах AMD, передача данных между памятью и процессором происходит напрямую.
Такой метод передачи данных значительно увеличил производительность.
У процессоров семейства Core i7 LGA1366 тоже нет шины FSB, а есть высокоскоростная шина QPI.

Технологический процесс (проектная норма процессора) определяет в первую очередь структурный размер тех элементов, из которых состоит процессор.
В частности, от технологического процесса производства зависит тепловыделение и энергопотребление современных процессоров.
Чем меньше эта величина (технологический процесс), тем меньше тепла выделяет процессор и меньше потребляет энергии.
Более ранние процессоры Core 2 были выполнены по 45- 65-нанометровой технологиям. Более новые Haswell и Ivy Bridge Corei3, Corei5, Core i7 четвёртого и третьего поколения по 22-нм, Sandy Bridge® Corei3, Corei5, Core i7 второго поколения от Intel и Bulldozer от AMD выполнены по технологии 32 нм.

Набор инструкций - это набор допустимых для процессора управляющих кодов и способов адресации данных. Система таких команд жестко связана с конкретным типом процессора.
Чем шире набор инструкций у процессора, тем лучше и быстрее обрабатываются данные.

Боксовая комплектация (BOX) или трей (Tray/ОЕМ)?

Боксовая (BOX) комплектация представляет собой комплект:
- сам процессор;
- кулер с нанесённой термопастой (радиатор+вентилятор);
- инструкция и документация.

Отличительной особенностью BOX-комплектации является расширенная гарантия на процессор - 3 года.
BOX-процессоры лучше брать для офисных и домашних мультимедийных систем, в которых не планируется смена охлаждения на более эффективное.
Но BOX-процессоры стоят немного дороже, чем такие же TRAY.

Трей-процессор (Tray/OEM) представляет собой только процессор. Нет кулера и документов.

В отличии от BOX гарантия на Tray-процессор всего лишь 1 год.
Tray/OEM процессоры используют фирмы-сборщики готовых брендовых компьютеров. А также энтузиасты геймеры-оверклокеры, которым не принципиальны гарантия (после разгона гарантия с изделия снимается) и родное охлаждение, т.к. на процессор сразу устанавливается более эффективное.
Tray-процессоры стоят немного дешевле.

Intel или AMD?

На эту тему всегда шли ожесточенный споры на форумах и конференциях. Вообще, эта тема является вечной. Сторонники Intel будут утверждать, что эти процессоры во всех отношениях лучше, чем у конкурента. И наоборот. Сам же я являюсь приверженцем Intel.

Если сравнить одинаковые по частоте и количеству ядер процессоры двух этих компаний, то процессоры Intel будут более производительнее. Однако в ценовом диапазоне преимущество у AMD.

Если вы собираете себе бюджетную систему на минимальные финансы, то процессоры AMD - ваш выбор. Если же у вас будет игровая или производительная вычислительная система, то выбор стоит сделать в пользу Intel.

Есть ещё один момент, материнские платы для процессоров Intel также стоят дороже, а платформа AMD соответственно дешевле. Выбирая процессор для своего ПК, нужно определится с начальными приоритетами, собрать недорогую систему на AMD или более производительную, но подороже на базе Intel.

В ассортименте каждой компании есть много моделей процессоров, начиная от бюджетных, например, Celeron у Intel и Sempron/Duron у AMD, до топовых Core i7 у Intel, A10 у AMD.

В разных приложениях результаты довольно различны, так в некоторых победу одерживают процессоры AMD, в других - Intel, поэтому выбор всегда остается за пользователем.

Просто у AMD есть одно неоспоримое преимущество - это цена. И один недостаток - процессоры от AMD не столь конструктивно надёжны и немного горячее.

У Intel тоже есть преимущество - процессоры более конструктивно надёжны и стабильны, а также менее горячие. Недостаток - цена выше, чем у конкурента.

Судя по нынешним тестам игровая производительность процессоров между INTEL и AMD имеет такой вид:




Подведём итоги:

Значит, чтобы купить максимально производительный игровой процессор для компьютера, нужно выбрать процессор с:
1) наиболее новой архитектурой;
2) максимальной частотой ядра (желательно от 3 ГГц и выше);
3) максимальным размером кэша L2/L3;
4) большим набором доступных инструкций;
5) минимальным технологическим процессом изготовления.

После прочтения этой статьи, я думаю, каждый сможет определится с тем, какой процессор купить ему для своего компьютера.
Купить процессоры за большие деньги можно всегда, но если на компьютере будут выполняться только бытовые задачи, не требующие большой вычислительной мощности - деньги будут потрачены впустую.

Похожие статьи