Применение модуля захвата, сравнения, ШИМ в контроллерах Microchip. Точный и быстрый преобразователь цифрового сигнала шим в аналоговое напряжение Напряжение на выходе шим

ШИМ или PWM (широтно-импульсная модуляция, по-английски pulse-width modulation) – это способ управления подачей мощности к нагрузке. Управление заключается в изменении длительности импульса при постоянной частоте следования импульсов. Широтно-импульсная модуляция бывает аналоговой, цифровой, двоичной и троичной.

Применение широтно-импульсной модуляции позволяет повысить КПД электрических преобразователей, особенно это касается импульсных преобразователей, составляющих сегодня основу вторичных источников питания различных электронных аппаратов. Обратноходовые и прямоходовые однотактные, двухтактные и полумостовые, а также мостовые импульсные преобразователи управляются сегодня с участием ШИМ, касается это и резонансных преобразователей.

Широтно-импульсная модуляция позволяет регулировать яркость подсветки жидкокристаллических дисплеев сотовых телефонов, смартфонов, ноутбуков. ШИМ реализована в , в автомобильных инверторах, в зарядных устройствах и т. д. Любое зарядное устройство сегодня использует при своей работе ШИМ.

В качестве коммутационных элементов, в современных высокочастотных преобразователях, применяются биполярные и полевые транзисторы, работающие в ключевом режиме. Это значит, что часть периода транзистор полностью открыт, а часть периода - полностью закрыт.

И так как в переходных состояниях, длящихся лишь десятки наносекунд, выделяемая на ключе мощность мала, по сравнению с коммутируемой мощностью, то средняя мощность, выделяемая в виде тепла на ключе, в итоге оказывается незначительной. При этом в замкнутом состоянии сопротивление транзистора как ключа очень невелико, и падение на нем напряжения приближается к нулю.

В разомкнутом же состоянии проводимость транзистора близка к нулю, и ток через него практически не течет. Это позволяет создавать компактные преобразователи с высокой эффективностью, то есть с небольшими тепловыми потерями. А резонансные преобразователи с переключением в нуле тока ZCS (zero-current-switching) позволяют свести эти потери к минимуму.


В ШИМ-генераторах аналогового типа, управляющий сигнал формируется аналоговым компаратором, когда на инвертирующий вход компаратора, например, подается треугольный или пилообразный сигнал, а на неинвертирующий - модулирующий непрерывный сигнал.

Выходные импульсы получаются , частота их следования равна частоте пилы (или сигнала треугольной формы), а длительность положительной части импульса связана с временем, в течение которого уровень модулирующего постоянного сигнала, подаваемого на неинвертирующий вход компаратора, оказывается выше уровня сигнала пилы, который подается на инвертирующий вход. Когда напряжение пилы выше модулирующего сигнала - на выходе будет отрицательная часть импульса.

Если же пила подается на неинвертирующий вход компаратора, а модулирующий сигнал - на инвертирующий, то выходные импульсы прямоугольной формы будут иметь положительное значение тогда, когда напряжение пилы выше значения модулирующего сигнала, поданного на инвертирующий вход, а отрицательное - когда напряжение пилы ниже сигнала модулирующего. Пример аналогового формирования ШИМ - микросхема TL494, широко применяющаяся сегодня при построении импульсных блоков питания.


Цифровая ШИМ используются в двоичной цифровой технике. Выходные импульсы также принимают только одно из двух значений (включено или выключено), и средний уровень на выходе приближается к желаемому. Здесь пилообразный сигнал получается благодаря использованию N-битного счетчика.

Цифровые устройства с ШИМ работают также на постоянной частоте, обязательно превосходящей время реакции управляемого устройства, этот подход называется передискретизацией. Между фронтами тактовых импульсов, выход цифрового ШИМ остается стабильным, или на высоком, или на низком уровне, в зависимости от текущего состояния выхода цифрового компаратора, который сравнивает уровни сигналов на счетчике и приближаемый цифровой.

Выход тактуется как последовательность импульсов с состояниями 1 и 0, каждый такт состояние может сменяться или не сменяться на противоположное. Частота импульсов пропорциональна уровню приближаемого сигнала, а единицы, следующие друг за другом могут сформировать один более широкий, более продолжительный импульс.

Получаемые импульсы переменной ширины будут кратны периоду тактования, а частота будет равна 1/2NT, где T – период тактования, N – количество тактов. Здесь достижима более низкая частота по отношению к частоте тактования. Описанная схема цифровой генерации - это однобитная или двухуровневая ШИМ, импульсно-кодированная модуляция ИКМ.

Эта двухуровневая импульсно-кодированная модуляция представляет собой по сути серию импульсов с частотой 1/T, и шириной Т или 0. Для усреднения за больший промежуток времени применяется передискретизация. Высокого качества ШИМ позволяет достичь однобитная импульсно-плотностная модуляция (pulse-density-modulation), называемая также импульсно-частотной модуляцией.

При цифровой широтно-импульсной модуляции прямоугольные подимпульсы, которыми оказывается заполнен период, могут приходиться на любое место в периоде, и тогда на среднем за период значении сигнала сказывается только их количество. Так, если разделить период на 8 частей, то комбинации импульсов 11001100, 11110000, 11000101, 10101010 и т. д. дадут одинаковое среднее значение за период, тем не менее, отдельно стоящие единицы утяжеляют режим работы ключевого транзистора.

Корифеи электроники, повествуя о ШИМ, приводят такую аналогию с механикой. Если при помощи двигателя вращать тяжелый маховик, то поскольку двигатель может быть либо включен, либо выключен, то и маховик будет либо раскручиваться и продолжать вращаться, либо станет останавливаться из-за трения, когда двигатель выключен.

Но если двигатель включать на несколько секунд в минуту, то вращение маховика будет поддерживаться, благодаря инерции, на некоторой скорости. И чем дольше продолжительность включения двигателя, тем до более высокой скорости раскрутится маховик. Так и с ШИМ, на выход приходит сигнал включений и выключений (0 и 1), и в результате достигается среднее значение. Проинтегрировав напряжение импульсов по времени, получим площадь под импульсами, и эффект на рабочем органе будет тождественен работе при среднем значении напряжения.

Так работают преобразователи, где переключения происходят тысячи раз в секунду, и частоты достигают единиц мегагерц. Широко распространены специальные ШИМ-контроллеры, служащие для управления балластами энергосберегающих ламп, блоками питания, и т. д.


Отношение полной длительности периода импульса ко времени включения (положительной части импульса) называется скважностью импульса. Так, если время включения составляет 10 мкс, а период длится 100 мкс, то при частоте в 10 кГц, скважность будет равна 10, и пишут, что S = 10. Величина обратная скважности называется коэффициентом заполнения импульса, по-английски Duty cycle, или сокращенно DC.

Так, для приведенного примера DC = 0.1, поскольку 10/100 = 0.1. При широтно-импульсной модуляции, регулируя скважность импульса, то есть варьируя DC, добиваются требуемого среднего значения на выходе электронного или другого электротехнического устройства, например двигателя.

Например);

  • резистор номиналом 190…240 Ом (вот отличный набор резисторов самых распространённых номиналов);
  • персональный компьютер со средой разработки Arduino IDE.
  • Инструкция по использованию ШИМ в Arduino

    1 Общие сведения о широтно-импульсной модуляции

    Цифровые выводы Arduino могут выдавать только два значения: логический 0 (LOW, низкий уровень) и логическую 1 (HIGH, высокий). На то они и цифровые. Но есть у Ардуино «особые» выводы, которые обозначаются PWM . Их иногда обозначают волнистой чертой "~" или обводят кружочками или ещё как-то выделяют среди прочих. PWM расшифровывается как Pulse-width modulation или широтно-импульсная модуляция , ШИМ .

    Широтно-импульсно модулированный сигнал - это импульсный сигнал постоянной частоты, но переменной скважности (соотношение длительности импульса и периода его следования). Из-за того, что большинство физических процессов в природе имеют инерцию, то резкие перепады напряжения от 1 к 0 будут сглаживаться, принимая некоторое среднее значение. С помощью задания скважности можно менять среднее напряжение на выходе ШИМ.

    Если скважность равняется 100%, то всё время на цифровом выходе Arduino будет напряжение логическая "1" или 5 вольт. Если задать скважность 50%, то половину времени на выходе будет логическая "1", а половину - логический "0", и среднее напряжение будет равняться 2,5 вольтам. Ну и так далее.


    В программе скважность задаётся не в процентах, а числом от 0 до 255. Например, команда analogWrite(10, 64) скажет микроконтроллеру подать на цифровой PWM выход №10 сигнал со скважностью 25%.

    Выводы Arduino с функцией широтно-импульсной модуляции работают на частоте около 500 Гц. Значит, период следования импульсов - около 2 миллисекунд, что и отмеряют зелёные вертикальные штрихи на рисунке.

    Получается, что мы можем сымитировать аналоговый сигнал на цифровом выходе! Интересно, правда?!

    Как же мы можем использовать ШИМ? Применений масса! Например, управлять яркостью светодиода, скоростью вращения двигателя, током транзистора, звуком из пьезоизлучателя и т.д.…

    2 Схема для демонстрации широтно-импульсной модуляции в Arduino

    Давайте рассмотрим самый базовый пример - управление яркостью светодиода с помощью ШИМ. Соберём классическую схему.


    3 Пример скетча с ШИМ

    Откроем из примеров скетч "Fade": Файл Образцы 01.Basics Fade .


    Немного изменим его и загрузим в память Arduino.

    Int ledPin = 3; // объявляем пин, управляющий светодиодом int brightness = 0; // переменная для задания яркости int fadeAmount = 5; // шаг изменения яркости void setup() { pinMode(ledPin, OUTPUT); } void loop() { analogWrite(ledPin, brightness); // устанавливаем яркость brightness на выводе ledPin brightness += fadeAmount; // изменяем значение яркости /* при достижении границ 0 или 255 меняем направление изменения яркости */ if (brightness == 0 || brightness == 255) { fadeAmount = -fadeAmount; // изменяем знак шага } delay(30); // задержка для большей видимости эффекта }

    4 Управление яркостью светодиода с помощью PWM и Arduino

    Включаем питание. Светодиод плавно наращивает яркость, а затем плавно уменьшает. Мы сымитировали аналоговый сигнал на цифровом выходе с помощью широтно-импульсной модуляции.


    Посмотрите приложенные видео, где наглядно показано изменение яркости светодиода, на подключённом осциллографе видно, как при этом меняется сигнал с Arduino.

    Широтно-импульсная модуляция (ШИМ) – это метод преобразования сигнала, при котором изменяется длительность импульса (скважность), а частота остаётся константой. В английской терминологии обозначается как PWM (pulse-width modulation). В данной статье подробно разберемся, что такое ШИМ, где она применяется и как работает.

    Область применения

    С развитием микроконтроллерной техники перед ШИМ открылись новые возможности. Этот принцип стал основой для электронных устройств, требующих, как регулировки выходных параметров, так и поддержания их на заданном уровне. Метод широтно-импульсной модуляции применяется для изменения яркости света, скорости вращения двигателей, а также в управлении силовым транзистором блоков питания (БП) импульсного типа.

    Широтно-импульсная (ШИ) модуляция активно используется в построении систем управления яркостью светодиодов. Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц. Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода. Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины. С популяризацией светодиодных ламп на 220В стал вопрос о повышении надёжности их работы при нестабильном входном напряжении. Решение было найдено в виде универсальной микросхемы – драйвера питания, работающего по принципу широтно-импульсной или частотно-импульсной модуляции. Схема на базе одного из таких драйверов детально описана .

    Подаваемое на вход микросхемы драйвера сетевое напряжение постоянно сравнивается с внутрисхемным опорным напряжением, формируя на выходе сигнал ШИМ (ЧИМ), параметры которого задаются внешними резисторами. Некоторые микросхемы имеют вывод для подачи аналогового или цифрового сигнала управления. Таким образом, работой импульсного драйвера можно управлять с помощью другого ШИ-преобразователя. Интересно, что на светодиод поступают не высокочастотные импульсы, а сглаженный дросселем ток, который является обязательным элементом подобных схем.

    Масштабное применение ШИМ отражено во всех LCD панелях со светодиодной подсветкой. К сожалению, в LED мониторах большая часть ШИ-преобразователей работает на частоте в сотни Герц, что негативно отражается на зрении пользователей ПК.

    Микроконтроллер Ардуино тоже может функционировать в режиме ШИМ контроллера. Для этого следует вызвать функцию AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.

    Повсеместное распространение устройств, работающих по принципу ШИМ, позволило человечеству уйти от трансформаторных блоков питания линейного типа. Как результат – повышение КПД и снижение в несколько раз массы и размеров источников питания.

    ШИМ-контроллер является неотъемлемой частью современного импульсного блока питания. Он управляет работой силового транзистора, расположенного в первичной цепи импульсного трансформатора. За счёт наличия цепи обратной связи напряжение на выходе БП всегда остаётся стабильным. Малейшее отклонение выходного напряжения через обратную связь фиксируется микросхемой, которая мгновенно корректирует скважность управляющих импульсов. Кроме этого современный ШИМ-контроллер решает ряд дополнительных задач, способствующих повышению надёжности источника питания:

    • обеспечивает режим плавного пуска преобразователя;
    • ограничивает амплитуду и скважность управляющих импульсов;
    • контролирует уровень входного напряжения;
    • защищает от короткого замыкания и превышения температуры силового ключа;
    • при необходимости переводит устройство в дежурный режим.

    Принцип работы ШИМ контроллера

    Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

    Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

    Аналоговая ШИМ

    Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

    Цифровая ШИМ

    Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

    Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства. Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

    • высокой эффективности преобразования сигнала;
    • стабильность работы;
    • экономии энергии, потребляемой нагрузкой;
    • низкой стоимости;
    • высокой надёжности всего устройства.

    Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

    Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

    Пример использования ШИМ регулятора

    Один из вариантов реализации ШИМ простого регулятора уже описывался ранее в . Он построен на базе микросхемы и имеет небольшую обвязку. Но, несмотря на простату схемы, регулятор имеет довольно широкую область применения: схемы управления яркости светодиодов, светодиодных лент, регулировка скорость вращения двигателей постоянного тока.

    Читайте так же


    "Документация" - техническая информация по применению электронных компонентов , особенностях построения различных радиотехнических и электронных схем , а также документация по особенностям работы с инженерным программным обеспечением и нормативные документы (ГОСТ).

    Фирма Microchip продолжает разработку и производство передовых продуктов, предоставляющих пользователю большую функциональность, гибкость и надежность. Микроконтроллеры PICmicro используются во многих приборах повседневного спроса - от стиральных машин и автомобильной техники до медицинских приборов. Модуль сравнения, захвата и ШИМ (ССР), который присутствует во многих микроконтроллерах Microchip, используется в основном для измерения и формирования импульсных сигналов. Расширенный модуль ССР (enhanced CCP - ECCP), имеющийся во многих новых микроконтроллерах, предоставляет дополнительные возможности для формирования широтно-импульсной модуляции (ШИМ). Модуль ЕССР обеспечивает поддержку управления мостовыми и полумостовыми схемами управления, программируемое время задержки переключения (для предотвращения протекания сквозных токов через внешние силовые ключи, связанного с их разным временем переключения) и возможность автоматического выключения ШИМ при аварийных ситуациях. Модули ССР и ЕССР имеют широкие области применения. Эта статья описывает основные принципы использования данных модулей в каждом режиме, а также "нестандартные" варианты использования в практических решениях.

    Модуль захвата (capture)

    В режиме захвата 16-битное значение таймера (Timer 1) захватывается в регистр CCPRxH:CCPRxL при каждом событии на входе CCPx. Событие для захвата задается в регистре CCPxCON:
    • каждый спад входного сигнала;
    • каждый фронт входного сигнала;
    • каждый 4-й фронт входного сигнала;
    • каждый 16-й фронт входного сигнала.

    Модуль захвата используется для измерения длительности между двумя событиями, например периода, длительности импульса, скважности и т. п.

    Пример 1. Измерение периода дискретного сигнала (рис. 1).

    Рис. 1. Измерение периода

      • вычитаем сохраненное время (t1) из захваченного значения времени (t2) и сохраняем результат периода Т;
      • сохраняем захваченное время t2.

    Пример 2. Измерение периода с усреднением результата (рис. 2).


    Рис. 2. Измерение периода с усреднением результата

    Усреднение результата измерений часто требуется при зашумленном входном сигнале. Модуль ССР в PIC-контроллерах Microchip позволяет выполнить усреднение с минимальными программными издержками.

    1. Конфигурируем управляющие биты CCPxM3:CCPxM0 (CCPxCON) на захват по каждому 16-му фронту входного сигнала.
    2. Конфигурируем предделитель Timer1 так, чтобы не происходило переполнение таймера за измеряемое время.
    3. Разрешаем прерывание от CCP (бит CCPxIE).
    4. При возникновении прерывания:
      • вычитаем сохраненное время (t1) из захваченного значения времени (t2) и сохраняем результат 16 периодов (168Т);
      • сохраняем захваченное время t2;
      • сдвигаем полученный результат на 4 шага вправо (деление на 16) - получаем усредненный результат за 16 периодов.

    Пример 3. Измерение длительности импульса (рис. 3).


    Рис. 3. Измерение длительности импульса

    1. Конфигурируем управляющие биты CCPxM3:CCPxM0 (CCPxCON) на захват по каждому фронту входного сигнала.
    2. Конфигурируем предделитель Timer1 так, чтобы не происходило переполнение таймера за время измеряемого импульса.
    3. Разрешаем прерывание от CCP (бит CCPxIE).
    4. При следующем прерывании вычитаем из t1 новое захваченное значение. Результат будет соответствовать длительности импульса.

    Пример 4. Измерение скважности импульсов (рис. 4).


    Рис. 4. Измерение скважности импульсов

    Типичный пример, где требуется такого рода измерение - это измерение ускорения. Цифровые акселерометры обычно имеют выходной сигнал со скважностью, пропорциональной ускорению движения прибора. Скважность можно измерять по следующему алгоритму.

    1. Конфигурируем управляющие биты CCPxM3:CCPxM0 (CCPxCON) на захват по каждому фронту входного сигнала.
    2. Конфигурируем предделитель таймера 1 так, чтобы не происходило переполнение таймера за время TMAX (максимально возможная длительность периода).
    3. Разрешаем прерывание от CCP (бит CCPxIE).
    4. При возникновении прерывания сохраняем захваченное значение таймера (t1) и переконфигурируем захват по спаду импульса.
    5. При следующем прерывании вычитаем из t1 новое захваченное значение t2. Этот результат будет соответствовать длительности импульса (W).
    6. Переконфигурируем модуль ССР на захват по следующему фронту импульса.
    7. При возникновении прерывания вычитаем из t1 новое захваченное значение t3. Этот результат будет соответствовать периоду (Т).
    8. Разделить значение T на W - получим значение скважности.
    9. Повторять пп. 4-8 для получения следующих значений скважности.

    Пример 5. Измерение скорости вращения энкодера.


    Рис. 5. Оптический энкодер

    Скорость вращения энкодера может быть измерена разными способами. Два наиболее часто встречающихся типа датчиков в энкодерах - это оптический сенсор и датчики Холла. Оптические энкодеры используют инфракрасный светодиод и датчик, а также колесо с прорезями, модулирующими световой поток (рис. 5). Другой тип использует чувствительные к магнитному полю датчики Холла, с помощью которых можно определять положение магнитов в электромоторе или постоянных магнитов, закрепленных на вращающемся объекте (рис. 6).


    Рис. 6. Энкодер с датчиками Холла

    Такой датчик выдает один или несколько импульсов на один оборот объекта. На рис. 7 показаны временные диаграммы при разных скоростях вращения. При увеличении скорости вращения период импульсов и их длительность становятся меньше. Период и длительность импульса пропорциональны скорости вращения. Для получения большей разрешающей способности лучше использовать датчики с несколькими импульсами на 1 оборот. Описание измерения периода для определения скорости вращения энкодера см. в примере 1, а метод усреднения измерений периода - в примере 2.


    Рис. 7. Выход энкодера при разных скоростях вращения

    Пример 6. Измерение периода аналогового сигнала.


    Рис. 8. Схема измерения периода аналогового сигнала

    Микроконтроллер со встроенным аналоговым компаратором и модулем CCP или ЕССР может быть легко использован для измерения периода аналогового сигнала. На рис. 8 приведен пример схемы с использованием периферийных модулей контроллера PIC16F684. Резисторы R3 и R4 задают порог срабатывания компаратора. При пересечении входным сигналом уровня порога, выходной уровень напряжения компаратора переключается между 0 и 1. Резисторы R1 и R2 задают гистерезис для предотвращения "дребезга" при равенстве порогового и входного напряжений. Рис. 9 демонстрирует эффект гистерезиса.

    Рис. 9. Диаграммы в контрольных точках

    Модуль ССР конфигурируется в режим захвата для измерения периода на выходе компаратора.

    Модуль сравнения (compare)

    В режиме сравнения 16-разрядные значения регистра CCPRx сравниваются с состоянием таймера. При совпадении происходит прерывание и вывод контроллера CCPx:

    • устанавливается в 1;
    • устанавливается в 0;
    • состояние не меняется;
    • переключается конфигурация модуля.

    Реакция вывода определяется битами управляющего регистра CCPxCON .

    Триггер специальных событий

    Таймер 1 обычно не сбрасывается в 0 при возникновении прерывания от модуля CCP в режиме сравнения, кроме случая конфигурации модуля в режим Триггера специального события. В этом режиме, когда значения таймера и регистра CCPRx равны, формируется прерывание, таймер 1 очищается и автоматически запускается преобразование АЦП (если это разрешено).

    Работа модуля в режиме сравнения подобна функции таймера в обычном секундомере. В случае секундомера определенное время загружается в часы и производится отсчет в обратном порядке с установленного времени до достижения нуля. Отличие работы таймера в режиме сравнения заключается в том, что время отсчитывается от нуля до установленного значения. Этот способ полезен для того, чтобы произвести определенные действия в точные интервалы времени. Обычный режим работы таймера может использоваться для исполнения тех же самых функций, однако в этом случае таймер нужно будет перезагружать каждый раз. Режим сравнения также может автоматически изменять состояние вывода CCPx.

    Пример 7. Формирование модулирующих импульсов для различных форматов передачи данных.


    Рис. 10. Широтно-импульсная (ШИМ)

    Модуль ССР в режиме сравнения может использоваться для формирования различных форматов модуляции. На рис. 10-12 приведены различные варианты представления 0 и 1 в различных форматах передачи данных. Передача данных похожа на асинхронную передачу данных, содержащую СТАРТ-бит, восемь информационных бит и СТОП-бит. Время ТЕ является базовым временным элементом в каждом формате модуляции и задает скорость передачи данных. Триггер специального события может использоваться для формирования времени ТЕ. При возникновении прерывания от CCP подпрограмма обработки прерывания формирует требуемый формат передачи данных.

    Рис. 11. Манчестерская модуляция

    Рис. 12. Модуляция положением импульса

    Пример 8.

    Обычно стандартные модули ШИМ имеют разрядность в 10 бит. Модуль ССР в режиме сравнения может использоваться для формирования ШИМ с 16-разрядной точностью. Для этого:

    1. Настраиваем модуль ССР на установку вывода ССРх в "0" в режиме сравнения.
    2. Разрешаем прерывание от Timer 1.
    3. Записываем значение периода в Timer1 и его предделитель.
    4. Устанавливаем длительность импульса в регистр сравнения CCPRxL и CCPRxH.
    5. Устанавливаем выход ССРх в "1" при возникновении прерывания от переполнения Timer1. Следует заметить, что маленькие значения длительности импульса не могут быть сформированы из-за конечного времени обработки прерывания от Timer1. Это не сказывается на периоде формируемого сигнала, так как время выполнения прерывания от периода к периоду будет одинаковым.

    Рис. 13. Формирование 16-разрядной ШИМ

    Таймер Timer1 имеет четыре значения предделителя: 1:1, 1:2, 1:4 и 1:8. Возможная формируемая частота рассчитывается по формуле:

    F PWM = F OSC /(65536 x 4 x предделитель)

    Для микроконтроллера, работающего на частоте FOSC = 20 МГц, значения частот FPWM будут составлять 76,3 Гц, 38,1 Гц, 19,1 Гц и 9,5 Гц.

    Пример 9. Последовательное измерение с помощью АЦП.

    Триггер специального события в режиме сравнения (при совпадении значения Timer1 и регистра сравнения CCPRxL и CCPRxH) может формировать периодические прерывания и дополнительно автоматически запускать измерения АЦП. Покажем на примере, как организовать последовательный опрос АЦП в четко определенные моменты времени.


    Рис. 14. Последовательное измерение напряжений

    Пример. Микроконтроллер PIC16F684 работает от внутреннего генератора, сконфигурированного на работу с частотой 8 МГц. Нужно последовательно опрашивать каналы АЦП и измерять входное напряжение на выводах RA0, RA1 и RA2 через каждые 30 мс.

    Таймер 1 переполняется через время TOSC x 65536 x 4 x предделитель. Для предделителя 1:1 таймер переполнится через 32,8 мс.

    Значение регистра CCPR1 рассчитывается по формуле:

    CCPR1 = время/(TOSC x 4 x предделитель) = 30 мс/ (125 нс x 4 x 1) = 6000 = 0хЕА60 . CCPR1L = 0x60, CCPR1H = 0xEA .

    Модуль ЕССР должен быть сконфигурирован в режим триггера специального события. Этот режим формирует прерывание при совпадении значения Timer1 и регистра сравнения CCPRxL и CCPRxH. Для этого режима CCP1CONТ = "b00001011". При возникновении прерывания таймер автоматически очистится и установит бит GO в регистре ADCON0 для запуска преобразования АЦП. Когда произойдет прерывание от модуля ECCP, нужно выбрать следующий вход АЦП с помощью регистра ADCON0.

    Применение широтно-импульсной модуляции (ШИМ)

    Широтно-импульсная модуляция, рассматриваемая в следующих примерах, используется в разных задачах - от формирования звукового сигнала и управления яркостью светодиодов до управления скоростью вращения электромотора. Все эти задачи основываются на базовом принципе ШИМ-сигнала - чем больше скважность импульсов, тем больше среднее значение напряжения (рис. 15). Зависимость среднего напряжения от величины скважности является линейной:

    V СР = скважность х V макс

    Рис. 15. Зависимость среднего значения напряжения от скважности ШИМ

    Модуль ССР в микроконтроллерах Microchip может формировать ШИМ-сигнал с 10-разрядной точностью на выводе CCPx-микроконтроллера. Расширенный модуль ЕССР может формировать ШИМ на одном из 4 выводов Р1A...P1D в следующих режимах:

    • одиночный выход (только на выводе P1A);
    • управление полумостом (только на выводах P1A и P1B);
    • управление мостом (возможность реверсирования двигателя).

    В мостовом режиме управления доступны четыре варианта работы:

    • PA1A, P1C активный уровень "1"; P1B, P1D активный уровень "1";
    • PA1A, P1C активный уровень "1"; P1B, P1D активный уровень "0";
    • PA1A, P1C активный уровень "0"; P1B, P1D активный уровень "1";
    • PA1A, P1C активный уровень "0"; P1B, P1D активный уровень "0".

    Пример 10. Выбор частоты ШИМ Частота ШИМ зависит от различных факторов. При увеличении частоты увеличиваются потери на переключение, емкость и индуктивность нагрузки влияет на изменение формы сигнала. Поэтому в микромощных устройствах следует выбирать минимально возможную частоту ШИМ, а в схемах с емкостной или индуктивной нагрузкой выбирать частоту исходя из анализа схемы.

    Управление электродвигателями

    ШИМ применяется для управления двигателями в импульсном режиме. По характеристикам двигателя необходимо подобрать значение частоты ШИМ, чтобы обеспечить оптимальные характеристики электропривода. При выборе задающей частоты важным критерием являются акустические шумы, создаваемые двигателем при работе. Коллекторные двигатели могут создавать звуковой шум на частотах от 20 Гц до 4 кГц. Для исключения этого нежелательного эффекта нужно выбирать частоту выше 4 кГц. На таких частотах акустического шума уже не будет, так как механические части имеют более низкие резонансные частоты.

    Светодиоды и устройства освещения

    ШИМ часто используется для изменения яркости световых приборов. Эффект мерцания может быть заметен на частотах ниже 50 Гц, поэтому на практике частота ШИМ выбирается около 100 Гц или выше.

    Пример 11. Управление коллекторным двигателем постоянного тока с использованием модуля ССР

    Скорость вращения двигателя пропорциональна скважности ШИМ на выводе контроллера CCP1 (рис. 16). Рассмотрим, как нужно сконфигурировать микроконтроллер PIC16F628 для формирования ШИМ с частотой 20 кГц и 50-процентной скважностью. Тактовая частота контроллера 20 МГц.


    Рис. 16. Управление скоростью вращения коллекторного двигателя постоянного тока

      Выбираем величину предделителя Таймера 2: F PWM = F OSC /((PR2 x 1) x 4 х предделитель) = 19531 Гц , при PR2 = 255 и предделитель = 1.

      Полученная частота несколько ниже, чем 20 кГц, таким образом, величина предделителя подходит.

      Вычисляем величину регистра периода PR2: PR2 = F OSC /(F PWM x 4 x prescaler) - 1 = 249

      Вычисляем значение регистра скважности CCPR1L и CCPCON: CCPR1L:CCP1CON = = скважность G 0x3FF = 0x1FF CCPR1L = OxlFF " 2 = 0x7F, CCP1CON = 3

    1. Конфигурируем модуль ССР в режим ге нерации ШИМ: CCP1CON = "b001111000" .

    Пример 12.


    Рис. 17. Реверсивное управление коллекторным двигателем постоянного тока с использованием модуля ЕССР

    Модуль ЕССР имеет опции для управления коллекторными двигателями постоянного тока. На рис. 17 приведена схема подключения мостовой схемы управления двигателем. Выводы модуля ЕССР P1A...P1D могут работать в режиме управления мостовой схемой и задавать скорость и направление вращения. Для примера, изображенного на рис. 17, модуль ЕССР конфигурируется так: P1A, P1C активный уровень "1"; P1B, P1D активный уровень "1" (CCP1CON). Это сделано для того, чтобы MOSFET-драйверы (ТС428) открывали выходные ключи. В таблице указана связь между режимами работы двигателя и выходами ШИМ.

    Режим Р1А Р1В Р1С Р1D CCP1CON
    вперед 1 X X ШИМ b01xx1100
    назад X ШИМ 1 X b11xx1100
    инерция X X X X не важно
    торможение X 1 1 X не важно

    Пример 13. Управление шаговым двигателем в режиме микрошага

    Шаговые двигатели занимают уникальную нишу среди всего многообразия применений двигателей. Шаговые двигатели используются в системах измерения (в качестве индикаторов параметров) и в системах управления позиционированием исполнительных механизмов. Часто возникает необходимость управлять шаговым двигателем в режиме микрошага. Применение микроконтроллера дает много преимуществ: возможность управлять скоростью движения вала, то есть варьировать ускорением и торможением, точно позиционировать объект управления. Микроконтроллер PIC16F648 идеально подходит для большинства таких задач управления шаговым двигателем. Этот дешевый 14-вы-водной контроллер имеет 2К слов Flash-памяти программ, восемь каналов 10-разрядного АЦП, два аналоговых компаратора и модуль ECCP. Таким образом, используя только периферию контроллера, можно управлять шаговым двигателем с помощью специализированного модуля ШИМ - ECCP и реализовать защиту по току с помощью встроенного компаратора.

    Подробное описание алгоритма управления шаговым двигателем и пример программы опубликованы на сайте Microchip в документе AN906 "Stepper Motor Control Using the PIC16F684".

    Пример 14. Формирование аналогового сигнала


    Рис. 18. Формирование аналогового сигнала с помощью ШИМ и ФНЧ

    Выход ШИМ может применяться для цифро-аналогового преобразования с помощью нескольких внешних элементов. Преобразование ШИМ-сигнала в аналоговый осуществляется на основе фильтра ФНЧ (рис. 18). Для исключения появления в выходном сигнале нежелательных гармоник необходимо, чтобы частота модуляции (F PWM) была намного выше, чем частота выходного сигнала (F BW):

    F PWM =К x F BW ,

    причем, чем больше значение К, тем меньше гармоник.

    Для расчета фильтра применяется следующая формула:

    RC=1/(2πF BW)

    Выбрав значение емкости С, вычисляют значение резистора R. Подавление частоты ШИМ в выходном сигнале определяется выражением:

    -10 x log (дБ)

    Если подавление недостаточное, то увеличивают коэффициент К, увеличивая тем самым частоту модуляции. Подробное описание примера реализации есть в документе AN538 "Using PWM to Generate Analog Output in PIC17C42" на сайте Microchip.

    Пример 15. Повышающий преобразователь напряжения


    Рис. 19. Повышающий преобразователь

    Широтно-импульсная модуляция используется в преобразователях напряжения, например в повышающих схемах (рис. 19). Работу схемы можно разделить на две фазы. В первой фазе, когда на выходе ШИМ активный единичный уровень, происходит накопление энергии в катушке L1 путем подключения ее вывода на "землю" транзистором Т1. Во второй фазе на выходе ШИМ нулевой уровень, который запирает транзистор. Ток из катушки течет через диод D1 на конденсатор накопления С2 и на нагрузку. При этом напряжение на нагрузке получается выше напряжения питания. Расчет необходимых характеристик схемы производится по формулам:

    U вых /U вх =1/(1-D) ,

    где D - скважность импульсов ШИМ.

    Выбор значения индуктивности производится на основе максимального выходного тока:

    L = U вх (1-D)DT/2I вых ,

    где Т - период ШИМ.

    При расчете максимальная скважность D принимается не более 75%, а частота ШИМ - 10...100 кГц. Также необходимо рассчитать пульсации тока:

    I пульс = U вх DT

    Если ток пульсаций превышает значение тока насыщения индуктивности, то необходимо выбрать более высокое значение индуктивности.

    кважность ШИМ вычисляется контроллером по закону ПИД, что позволяет поддерживать выходное напряжение при изменении нагрузки. Более подробно данный метод описан в примере AN258 "Low Cost USB Microcontroller Programmer" на сайте Microchip.

    Пример 16. Управление яркостью светодиодов

    Для изменения яркости светодиодов можно использовать ШИМ. Для этого на выход ССР подключается светодиод через резистор, ограничивающий максимальный ток. Изменяя скважность импульсов с помощью регистра CCPRxL в широких пределах (00...FF), можно менять яркость свечения. Необходимо отметить, что частота ШИМ должна быть не менее 100 Гц для устранения мерцания.

    Пример 17. Протокол передачи данных Х-10. Синтез несущей частоты

    Для передачи информации по электросетям, например, передачи данных внутри квартиры по силовой проводке 220 В, часто используется протокол Х-10. На основную частоту (50/60 Гц) накладывается модулированный сигнал более высокой частоты (120 кГц). Для получения такой частоты в контроллере можно применять модуль ССР в режиме ШИМ. На рис. 6 показана реализация передатчика.

    В соответствии со спецификацией Х-10 частота 120 кГц должна иметь отклонения не более 2 кГц. Получение точного значения частоты в модуле ССР обусловлено примением системного кварца частотой 7,68 МГц. Подключение несущей частоты осуществляется в момент перехода сетевого напряжения через ноль.

    В примере AN236 "X-10 Home Automation Using the PIC16F877A" можно найти более детальное описание протокола и исходные коды программ.

    Рис. 20. Схема передачи сообщений по силовой сети 220 В по протоколу Х-10

    Совместное использование модулей захвата, сравнения, ШИМ

    Модуль ССР (ЕССР) в контроллерах Microchip может программироваться "на лету", за счет чего эти модули могут выполнять различные функции в одном и том же устройстве в зависимости от алгоритма работы. Рассмотрим возможности гибкого изменения функций на конкретных примерах.

    Пример 18. Автоопределение скорости передачи RS-232

    Интерфейс связи RS-232 имеет различные скорости передачи. Возможность устройства определять скорость связи и автоматически настраивать приемник и передатчик требует наличие в программе устройства соответствующих процедур.

    Во многих новых контроллерах Microchip существует аппаратный модуль EUSART с возможностью автоматического определения скорости приема данных и подстройки скорости передачи, возможностью работы в режиме SLEEP и другими функциями, необходимыми для реализации таких протоколов, как LIN.


    Рис. 21. Калибровочный символ для автоопределения скорости передачи RS-232

    В тех контроллерах, где нет аппаратного модуля USART, модуль ССР можно использовать в режиме захвата для автоматического определения скорости связи и затем перенастроить в режим сравнения для формирования или приема данных через RS-232. Для работы алгоритма автоопределения скорости необходим калибровочный байт, с которого начинается передача данных от одного устройства к другому. Один из возможных калибровочных символов изображен на рис. 21. Известные временные параметры калибровочного символа позволяют принимающему устройству определить и настроить скорость передачи интерфейса RS-232.

    Алгоритм определения скорости передачи по калибровочному символу:

    1. Настраиваем модуль ССР на захват по спаду (определение стартового бита).
    2. Когда стартовый бит определен, сохраняем значение регистра CCPR1.
    3. Настраиваем модуль ССР на захват по фронту (определение стопового бита).
    4. Когда стоповый бит определен, сохраняем значение регистра CCPR1.
    5. Определяем разность между значениями CCPR1, полученными в п. 4 и в п. 2. Это время 8 битовых интервалов.
    6. Разность сдвигаем на три бита вправо для деления на 8. Полученное значение - время битового интервала.
    7. Сдвигаем еще на один бит вправо. Получаем время половины битового интервала.

    Примеры программ для организации приема и передачи информации по последовательному каналу, а также процедуры автоопределения скорости передачи есть в AN712 "RS-232 Autobaud for the PIC16C5X Devices".

    Пример 19. АЦП двойного интегрирования

    Модуль ССР позволяет построить АЦП двойного интегрирования на основе внешнего интегратора. На рис. 8 представлена схема такого устройства. Интегрирование входного сигнала U вх осуществляется за фиксированный промежуток времени Т1. Затем на вход интегратора подается U оп и измеряется время, за которое на выходе интегратора появится нулевой уровень. По временам Т1 и Т2, а также по U оп можно вычислить U вх.


    Рис. 22. АЦП двойного интегрирования с применением модуля ССР

    Для задания времени Т1 нужно использовать режим сравнения модуля ССР, а для определения Т2 - режим захвата. Кратко алгоритм можно представить так:

    • Настраиваем ССР на режим сравнения, используем триггер специального события.
    • Подключаем Uвх на вход интегратора.
    • Отсчитываем Т1. Это время определяется параметрами интегратора.
    • По прерыванию от ССР подключаем на вход интегратора Uоп и задаем режим захвата модуля ССР по спаду.
    • По прерыванию от ССР фиксируем время Т2.
    • Вычисляем величину Uвх.
    U вх = U оп T2/T1

    Благодаря большому разнообразию контроллеров Microchip и их программной и аппаратной совместимости все описанные примеры могут быть легко перенесены на тот или иной контроллер в зависимости от требований разрабатываемой системы. Компания Microchip постоянно расширяет номенклатуру контроллеров как в сторону уменьшения числа выводов и увеличения периферийных устройств, так и в сторону мощных контроллеров с большим объемом памяти и с максимально возможной периферией.


    Дата публикации: 01.09.2004

    Мнения читателей
    • Олег / 03.03.2015 - 13:52
      Отличная статья. Спасибо!
    • Катя. / 24.12.2009 - 09:08
      я прошу вас надати мені інформація.

    На форуме достаточно часто встречаются вопросы по реализации Широтно Импульсной Модуляции на микроконтроллерных устройствах. Я и сам очень много спрашивал по этому поводу и, разобравшись, решил облегчить труд новичкам в этой области, так как информации в сети много и рассчитана она на разработчиков разного уровня, а сам я только- только в нем разобрался и память ещё свежа.

    Так как для меня самым важным было применение ШИМ именно для управления яркостью светодиодов, то именно их я и буду использовать в примерах. В качестве микроконтроллера будем использовать горячо любимый ATmega8.

    Для начала вспомним, что такое ШИМ. ШИМ сигнал - это импульсный сигнал определенной частоты и скважности:

    Частота, это количество периодов за одну секунду. Скважность- отношение длительности импульса к длительности периода. Можно изменять и то и другое, но для управления светодиодами достаточно управлять скважностью. На картинке выше мы видим ШИМ сигнал со скважностью 50 %, так как длительность импульса (ширина импульса) ровно половина от периода. Соответственно светодиод будет ровно половину времени во включенном состоянии и половину в выключенном. Частота ШИМ очень большая и глаз не заметит мерцания светодиода из за инерционности нашего зрения, поэтому нам будет казаться, что светодиод светится на половину яркости. Если мы изменим скважность на 75%, то яркость светодиода будет на 3 четверти от полной, а график будет выглядеть так:

    Получается, что мы можем регулировать яркость светодиода от 0 до 100 %. А теперь поговорим о таком параметре ШИМ, как разрешение. Разрешение- это количество градаций (шагов) регулировки скважности, мы будем рассматривать разрешение в 256 шагов.

    С параметрами вроде разобрались, теперь поговорим о том, как нам получить этот самый ШИМ от микроконтроллера. Берем остро заточенный разогретый паяльник и начинаем пытать МК, одновременно подцепившись к двум его ногам осциллографом и проверяя наличие на них сигнала нужной нам скважности. В микроконтроллерах есть аппаратная поддержка ШИМ и несколько каналов для него, в нашем случае 3. За выдачу ШИМ отвечают определенные выводы МК, в нашем случае OC2, OC1A, OC1B (15,16,17 нога в DIP корпусе). Так же для этого используются таймеры микроконтроллера, в нашем случае TC1, TC2. Так как же сконфигурировать МК для выдачи сигнала необходимой скважности? Все очень просто, для начала сконфигурируем нужные нам ноги на выход:

    PORTB=0x00; DDRB=0x0E; // 0b00001110

    Далее начнем конфигурировать таймеры. Для таймера TC1 нам потребуются два регистра: TCCR1A и TCCR1B. Открываем даташит и читаем как настраиваются эти регистры. Я настроил его на 8 битный сигнал ШИМ, что соответствует разрешению в 256 шагов:

    TCCR1A=0xA1; TCCR1B=0x09;

    Для таймера TC2 мы будем использовать регистр TCCR2=0x69;. Его настройка выглядит так:

    TCCR2=0x69;

    Всё, таймеры сконфигурированы. Скважность будем задавать регистрами OCR1A,OCR1B, OCR2:

    Зададим требуемые скважности:

    OCR1A=0x32; //50 шагов OCR1B=0x6A; //106 шагов OCR2=0xF0; //240 шагов

    Ну и поместим инкремент и декремент этих регистров в бесконечный цикл:

    While(1) { OCR1A++; OCR1B--; OCR2++; delay_ms(50); }

    Первая тестовая программа готова и выглядит для CVAVR она так:

    #include "mega8.h" #include "delay.h" void main(void) { PORTB=0x00; DDRB=0x0E; // 0b00001110 TCCR1A=0xA1; TCCR1B=0x09; TCCR2=0x69; OCR1A=0x32; //50 шагов OCR1B=0x6A; //106 шагов OCR2=0xF0; //240 шагов while (1) { OCR1A++; OCR1B--; OCR2++; delay_ms(50); }; }

    Похожие статьи