Измерения малых сопротивлений методом вольтметра. Методы измерения электрического сопротивления

Выбор метода измерений зависит от ожидаемого значения измеряемого сопротивления и требуемой точности . Основными методами измерения сопротивлений постоянному току являются косвенный, метод непосредственной оценки и мостовой.

Рисунок 1. Схемы пробников для измерения больших (а) и малых (б) сопротивлений

Рисунок 2. Схемы измерения больших (а) и малых (б) сопротивлений методом амперметра - вольтметра В основных схемах косвенного метода применяют измерители напряжения и тока.

На рисунке 1, а представлена схема, пригодная для измерения сопротивлений одного порядка со входным сопротивлением Rв вольтметра Rн. Измерив при короткозамкнутом Rx напряжение U0, сопротивление Rх определяют по формуле Rx = Rи(U0/Ux-1).

При измерении по схеме рис. 5.1, б резисторы большого сопротивления включают последовательно с измерителем, а малого - параллельно.

Для первого случая Rx = (Rи + Rд)(Iи/Ix-1), где Iи - ток через измеритель при короткозамкнутом Rx; для второго случая

где Iи - ток через измеритель при отсутствии Rх, Rд - добавочный резистор.

Более универсален метод амперметра - вольтметра, позволяющий измерять сопротивления при определенных режимах их работы, что важно при измерении нелинейных сопротивлений (см. рис. 2).

Для схемы рис. 2, а

Для схемы рис. 2, б

Относительная методическая погрешность измерения:

Ra и Rв - сопротивления амперметра и вольтметра.

Рис. 3. Схемы омметров с последовательной (а) и параллельной (б) схемами измерения

Рис. 4. Мостовые схемы измерения сопротивлений: а - одинарный мост, б - двойной.

Из выражений для относительной погрешности видно, что схема на рис. 2, а обеспечивает меньшую погрешность при измерении больших сопротивлений, а схема на рис. 2, б - при измерении малых.

Погрешность измерения по методу амперметра-вольтметра рассчитывается по формуле

где gв, gа - классы точности вольтметра и амперметра; Uп, Iп - пределы измерений вольтметра и амперметра.

Непосредственное измерение сопротивлений постоянному току выполняется омметрами. Если значения сопротивлений более 1 Ом, применяют омметры с последовательной схемой измерения, а для измерения малых сопротивлений - с параллельной схемой. При пользовании омметром с целью компенсации изменения напряжения питания необходимо произвести установку стрелки прибора. Для последовательной схемы стрелка устанавливается на нуль при шунтированном измеряемом сопротивлений. (Шунтирование производится, как правило, специально предусмотренной в приборе кнопкой). Для параллельной схемы перед началом измерения стрелку устанавливают на отметку "бесконечность".

Чтобы охватить диапазон малых и больших сопротивлений, строят омметры по параллельно-последовательной схеме . В этом случае имеются две шкалы отсчета Rх.

Наиболее высокая точность может быть достигнута при использовании мостового метода измерения. Средние сопротивления (10 Ом - 1 МОм) измеряют с помощью одинарного моста, а малые - с помощью двойного.

Измеряемое сопротивление Rx включают в одно из плеч моста, диагонали которого подключают соответственно к источнику питания и нуль-индикатору; в качестве последнего могут быть использованы гальвано-метр, микроамперметр с нулем посередине шкалы и др.

Рис 5. Схемы измерения больших (а) и малых (б) сопротивлений переменному току

Условие равновесия обоих мостов определяется выражением

Плечи R1 и R3 обычно выполняют в виде магазинов сопротивлений (магазинный мост ). С помощью R3 устанавливают ряд значений отношений R3/R2, обычно кратных 10, а с помощью R1 уравновешивают мост. Отсчет измеряемого сопротивления производится по значению, установленному ручками магазинов сопротивлений. Уравновешивание моста может также производиться плавным изменением отношения резисторов R3/R2, выполненных в виде реохорда, при определенном значении R1 (линейный мост).

Для многократных измерений степени соответствия сопротивлений некоторому заданному значению Rн применяют неуравновешенные мосты . Они уравновешиваются при Rx=Rн. По шкале индикатора можно определить отклонение Rх от Rн в процентах.

На принципе самоуравновешивания работают автоматические мосты . Напряжение, возникающее при разбалансе на концах диагонали моста, после усиления воздействует на электродвигатель, перемешивающий движок реохорда. При уравновешивании моста движок останавливается, а положение реохорда определяет значение измеряемого сопротивления .

В радиолюбительской или электротехнической практике иногда возникает необходимость измерения малых сопротивлений (менее 1 Ом), например, при проверке обмоток трансформаторов, контактов реле, шунтов, расчёте заземления. Как же померять сопротивление величиной в милиомы или даже микроомы? Как известно, измерение сопротивлений основано на преобразовании их величины в ток или напряжение. На этом принципе и строится работа приставки к вольтметру для измерения малых сопротивлений.

Приставка милиомметр

Э та простая схема из одного зарубежного сайта, предназначается для измерения низких значений сопротивления - от 0,001 до 1.999 ом. "Прямой Индикация Сопротивления, Ом". Вы должны использовать отдельный аккумулятор для её питания. Напряжение питания стабилизировано микросхемой LM317LZ. Рекомендуем именно малогабаритную LM317LZ , а не LM317 . Но вы можете также использовать и LM317, если хотите. Подстроечный резистор должен быть настроен точно на ток 100 мА, чтобы получить высокую точность измерения сопротивления.

При измерении старайтесь максимально уменьшить длину проводов, так как каждый сантиметр будет давать дополнительное сопротивление.

На дисплей цифрового вольтметра (обычного мультиметра D830) будет выведено значение в Омах, от 0,001 до 1.999 Ом. Для испытаний прибора померяйте несколько параллельно соединённых одноомных резистора.

Аналоговый измеритель малых сопротивлений

Можно собрать не просто приставку, а готовый самостоятельный прибор. В этом аналоговом милиомметре используется два режима измерения сопротивления. При стабильном токе в 1А (шкала 1 деление = 0,002 Ом) и при стабильном токе 0,1А (шкала 1 деление = 0,02 Ом). Это для головки показанной на фото 1. Как видно из фото, измерительная головка имеет ток полного отклонения 100 мкА. Цена маленького деления — 2 мкА. При токе в 0,1А прибор будет измерять сопротивление с 0,02 Ома до 1-го Ома. Т.е. отклонение стрелки на последнее деление шкалы будет соответствовать одному Ому.

Принцип работы прибора заключается в измерении падения напряжения на измеряемом сопротивлении при прохождении через него определенного стабильного тока. Сопротивление рамки у стрелочного измерительного прибора равно 1200 Ом, ток полного отклонения — 0,0001 А, значит, если мы будем использовать этот индикатор в качестве вольтметра, потребуется подать на нее напряжение величиной U = IхR = 0,0001х1200 = 0,12 В = 120 мВ для отклонения стрелки на последнее деление шкалы. Именно такое напряжение должно упасть на сопротивлении в 1 Ом на пределе измерения прибора от 0,02 Ома до 1 Ома. Значит на данном пределе измерения нам надо пропустить через измеряемый резистор стабильный ток величиной I = U/R = 0,12/1 = 0,12A = 120 мА . Тоже самое можно рассчитать и для другого предела.

Электрические цепи представляют собой совокупность соединенных друг с другом элементов - источников электрической энергии и нагрузок в виде резисторов, катушек индуктивности, конденсаторов. При определенных допущениях эти нагрузки можно рассматривать как линейные пассивные двухполюсники с сосредоточенными постоянными, характеризуемые некими идеальными параметрами - сопротивлением R , индуктивностью L , емкостью С .

С учетом остаточных параметров конденсатор, катушку индуктивности или резистор можно характеризовать некоторым эффективным значением емкости, индуктивности, сопротивления, которые зависят от частоты. Поэтому эффективные параметры компонентов необходимо измерять на рабочих частотах, если их влиянием на результат измерения нельзя пренебречь.

В зависимости от объекта измерений, требуемой точности результата, диапазона рабочих частот и других условий для измерения параметров двухполюсников применяют различные методы и средства измерений. Наиболее распространенными являются следующие методы измерения: амперметра - вольтметра, непосредственной оценки, мостовой, резонансный и дискретного счета.

Метод амперметра - вольтметра

Измерение методом амперметра - вольтметра сводится к измерению тока и напряжения в цепи с измеряемым двухполюсником и последующему расчету его параметров по закону Ома . Метод может быть использован для измерения активного и полного сопротивления, индуктивности и емкости.

Измерение активных сопротивлений производится на постоянном токе, при этом включение резистора R Х в измерительную цепь возможно по схемам, представленным на рис. 13.1, а и б.

Достоинство метода заключается в простоте его реа-лизации, недостаток - в сравнительно невысокой точно-сти результата измерения, которая ограничена классом точности применяемых измерительных приборов и мето-дической погрешностью. Последняя обусловлена влияни-ем мощности, потребляемой измерительными приборами в процессе измерения, другими словами - конечным значением собственных сопротивлений амперметра R A и вольтметра R V . Выразим методическую погрешность че-рез параметры схемы.


В схеме рис. 13.1,а вольтметр показывает значение напряжения на зажимах R Х , а амперметр — сумму токов I V +I.

Следовательно, результат измерения R , вы-численный по показаниям приборов, будет отличаться от R Х :

Относительная погрешность измерения в процентах

Здесь приближенное равенство справедливо, так как при правильной организации эксперимента предполагается выполнение условия R V >>R Х.

В схеме рис.13.1,б амперметр показывает значение тока в цепи с R Х , а вольтметр - сумму падений напря-жений на R Х U и амперметре U A . Учитывая это, можно по показаниям приборов вычислить результат измере-ния:

Относительная погрешность измерения в процентах в данном случае равна:

Сравнивая полученные выражения относительных по-грешностей, приходим к выводу: в схеме рис. 13.1,а на методическую погрешность результата измерения оказы-вает влияние только сопротивление R V ; для снижения этой погрешности необходимо обеспечить условие ; в схеме рис. 13.1,б на методическую погрешность результата измерения оказывает влияние только R A ; снижение этой погрешности достигается выполнением условия Таким образом, при практическом ис-пользовании данного метода можно рекомендовать пра-вило: измерение малых сопротивлений следует произво-дить по схеме рис. 13.1,а; при измерении больших сопротивлений предпочтение следует отдавать схеме рис. 13.1, б .

Измерение полного сопротивления Z X выполняется на переменном токе частотой f (рис. 13.2). По показаниям вольтметра и амперметра определяют модуль полного сопротивления

где - показания вольтметра и амперметра.

Выполнив аналогично предыдущему анализ методической погрешности, придем к выводу, что схему, представленную на рис. 13.2, а, целесообразно применять при , а на рис. 13.2, б - при .

Измерение емкости и индуктивности методом амперметра - вольтметра может быть выполнено по схемам, аналогичным рис. 13.2, только с заменой Z X , соответственно, на С или L .

Емкостное сопротивление конденсатора

При измерении емкости этим методом необходимо знать частоту источника питания. Для измерения больших емкостей рекомендуется схема а), а для малых емкостей - схема б ).

Измерение индуктивности катушки методом амперметра - вольтметра возможно, если ее сопротивление R L значительно меньше реактивного сопротивления X L . При этом

Откуда .

Если требуется получить более точный результат, то необходимо учесть сопротивление катушки. Так как

Погрешности измерения параметров элементов цепей методом амперметра - вольтметра на низких частотах составляют 0.5-10%. Погрешности измерения возрастают с увеличением частоты.

Мостовой метод

Важным классом средств измерения, предназначенных для измерения параметров элементов электрических цепей методом сравнения, являются мосты. Сравнение измеряемой величины (сопротивления, емкости. Индуктивности) с образцовой мерой при помощи моста в процессе измерения может осуществляться вручную или автоматически, на постоянном или на переменном токе. Мостовые схемы обладают большой точностью, высокой чувствительностью, широким диапазоном измеряемых значений параметров. На основе мостовых методов измерения строятся средства измерения, предназначенные как для измерения какой-либо одной величины, так и универсальные аналоговые и цифровые приборы.

Одинарный мост постоянного тока

Простейшая схема одинарного моста представлена на рис.13.3. Четыре резистора R 1 ,R 2 ,R 3 ,R 4 (их называют плечами моста ) соединены в кольцевой замкнутый контур. Точки соединения сопротивлений называют вершинами моста .

Цепи, соединяющие противоположные вершины, называют диагоналями. Диагональ ab содержит источник питания и называется диагональю питания . Диагональ cd , в которую включен индикатор Г , называется измерительной диагональю . В мостах постоянного тока в качестве индикатора обычно используется гальванометр.

В общем случае зависимость протекающего через гальванометр тока I г от сопротивления плеч, сопротивления гальванометра R г и напряжения питания U имеет вид

Измерение сопротивления может производиться в одном из двух режимов работы моста: уравновешенном либо неуравновешенном. Мост называется уравновешенным, если разность потенциалов между вершинами c и d равна нулю, а, следовательно, и ток через гальванометр равен нулю.

Из (13.1) следует, что I г = 0 при

Это условие равновесия одинарного моста постоянного тока можно сформулировать следующим образом: для того, чтобы мост был уравновешен, произведения сопротивлений противолежащих плеч моста должны быть равны. Если сопротивление одного из плеч моста (например, R 1) неизвестно, то уравновесив мост путем подбора сопротивлений плеч , находим из условия равновесия

В реальных мостах постоянного тока для уравновешивания моста регулируются отношение и сопротивление плеча , которые, соответственно, называют плечами отношения и плечом сравнения.

В состоянии равновесия моста ток через гальванометр равен нулю и, следовательно, колебания напряжения питания и сопротивления гальванометра влияния на результат измерения не оказывают (важно лишь, чтобы чувствительность гальванометра была достаточной для надежной фиксации состояния равновесия). Поэтому основная погрешность уравновешенного моста определяется чувствительностью гальванометра, чувствительностью схемы, погрешностью сопротивлений плеч, а также сопротивлениями монтажных проводов и контактов.

При измерении малых сопротивлений существенным источником погрешности может явиться сопротивление проводов, с помощью которых измеряемый резистор подключается к входным зажимам моста, так как оно полностью входит в результат измерения. Поэтому нижний предел измерения одинарного моста ограничен значениями сопротивления порядка 1 Ом . Верхний же предел измерения 10 6 - 10 8 Ом ограничивается чувствительностью гальванометра. При больших значениях измеряемого сопротивления токи в плечах моста очень малы и чувствительности гальванометра недостаточно для четкой фиксации равновесия. Для измерения малых сопротивлений (от 1 до 10 -8 Ом ) применяют двойные мосты.

Двойной мост постоянного тока . Схема двойного моста представлена на рис. 13.4 .

Для исключения влияния сопротивлений соединительных проводов и переходных сопротивлений контактов измеряемое сопротивление присоединяется по четырехзажимной схеме включения: двумя токовыми зажимами в цепь источника питания моста, а двумя потенциальными - в измерительную цепь. Аналогичные зажимы имеет образцовое сопротивление . В цепь источника питания моста входит регулировочное сопротивление , измеряемое сопротивление , образцовое сопротивление (одного порядка по величине с ) и малого сопротивления .

Сопротивления плеч R 1 ,R 2 ,R 3 и R 4 , входящие в измерительную цепь, выбирают достаточно большими (сотни и тысячи Ом ), поэтому влияние сопротивлений монтажных проводов и переходных сопротивлений в контактах пренебрежимо мало.

При равновесии моста формула для определения сопротивления имеет вид

При соблюдении равенства

и достаточно малом сопротивлении вторым членом формулы (13.3) можно пренебречь. Тогда формула (13.3) упрощается до следующей

Равенство (13.4) должно соблюдаться постоянно, поэтому резисторы R 1 ,R 2 и R 3 ,R 4 регулируются при помощи спаренных органов управления. Резистор представляет собой короткий отрезок медной шины большого сечения.

Промышленностью выпускаются одинарные и одинарно-двойные мосты постоянного тока классов точности от 0.005 до 5.

Измерительные мосты переменного тока

Для измерения емкости, индуктивности, взаимной индуктивности и тангенса угла потерь конденсаторов применяются мосты переменного тока, схемы которых отличаются большим разнообразием. Кроме простых четырехплечих мостовых схем существуют и более сложные мостовые схемы. Эти схемы путем последовательных эквивалентных преобразований могут быть приведены к простой четырехплечей схеме, которая является, таким образом, основной.

Схема одинарного четырехплечего моста переменного тока приведена на рис. 13.5. Так как мост питается напряжением переменного тока, то в качестве индикатора в нем применяются электронные милливольтметры переменного тока, либо осциллографические индикаторы нуля.

В общем случае сопротивления плеч моста переменного тока представляют собой комплексные сопротивления вида . Аналогично соотношению (13.2) условие равновесия одинарного моста переменного тока имеет вид:

Записав это выражение в показательной форме, получим

где - модуль комплексного сопротивления; - фазовый сдвиг между током и напряжением в соответствующем плече.

Соотношение (13.5) распадается на два скалярных условия равновесия:

Отсюда следует, что в схеме моста переменного тока равновесие наступает только при равенстве произведений модулей комплексных сопротивлений противолежащих плеч и равенстве сумм их фазовых сдвигов. При этом нужно иметь в виду, что при изменении значений активных и реактивных составляющих одновременно изменяются и модуль, и фаза, поэтому мост переменного тока можно привести к состоянию равновесия лишь большим или меньшим числом переходов от регулирования одного параметра к регулированию другого.

Второе уравнение (13.6) показывает, какими по характеру должны быть сопротивления плеч мостовой схемы, чтобы обеспечить возможность ее уравновешивания. Так, например, если в двух смежных плечах включены активные сопротивления (φ

Мосты переменного тока работают обычно на низких частотах 100 Гц и 1000 Гц. При работе на повышенных частотах погрешности измерения резко возрастают.

Электрическое сопротивление - основная электрическая характеристика проводника, величина, характеризующая противодействие электрической цепи или ее участка электрическому току. Также сопротивлением могут называть деталь (её чаще называют резистором) оказывающую электрическое сопротивление току. Электрическое сопротивление обусловлено преобразованием электрической энергии в другие виды энергии и измеряется в Омах.

Измерение методом амперметра и вольтметра . Сопротивление какой-либо электрической установки или участка электрической цепи можно определить с помощью амперметра и вольтметра, пользуясь законом Ома. При включении приборов по схеме рис. 1.2, (а) через амперметр проходит не только измеряемый ток I x , но и ток I v , протекающий через вольтметр. Поэтому сопротивление

R x = U / (I - U/R v ) (110)

где R v -- сопротивление вольтметра.

При включении приборов по схеме рис. 1.2, б вольтметр будет измерять не только падение напряжения Ux на определенном сопротивлении, но и падение напряжения в обмотке амперметра U A = IR А. Поэтому

R x = U/I - R А (111)

где R А -- сопротивление амперметра.

В тех случаях, когда сопротивления приборов неизвестны и, следовательно, не могут быть учтены, нужно при измерении малых сопротивлений пользоваться схемой рис. 1.2,а, а при измерении больших сопротивлений -- схемой рис. 1.2, б. При этом погрешность измерений, определяемая в первой схеме током I v , а во второй -- падением напряжения UА, будет невелика по сравнению с током I x и напряжением U x .

Измерение сопротивлений электрическими мостами. Мостовая схема (рис. 1.3,а) состоит из источника питания, чувствительного прибора (гальванометра Г) и четырех резисторов, включаемых в плечи моста: с неизвестным сопротивлением R x (R4) и известными сопротивлениями R1, R2, R3, которые могут при измерениях изменяться. Прибор включают в одну из диагоналей моста (измерительную), а источник питания -- в другую (питающую).

Сопротивления R1 R2 и R3 можно подобрать такими, что при замыкании контакта В показания прибора будут равны нулю (в таком случае принято говорить, что мост уравновешен). При этом неизвестное сопротивление

R x = (R 1 /R 2 )R 3 (112)

Рис. 1.2

Рис. 1.3.

В некоторых мостах отношение плеч R1/R2 установлено постоянным, а равновесие моста достигается только подбором сопротивления R3. В других, наоборот, сопротивление R3 постоянно, а равновесие достигается подбором сопротивлений R1 и R2.

Измерение сопротивления мостом постоянного тока осуществляется следующим образом. К зажимам 1 и 2 присоединяют неизвестное сопротивление R x (например, обмотку электрической машины или аппарата), к зажимам 3 и 4 -- гальванометр, а к зажимам 5 и 6 -- источник питания (сухой гальванический элемент или аккумулятор). Затем, изменяя сопротивления R1, R2 и R3 (в качестве которых используют магазины сопротивлений, переключаемые соответствующими контактами), добиваются равновесия моста, которое определяется по нулевому показанию гальванометра (при замкнутом контакте В).

Существуют различные конструкции мостов постоянного тока, при использовании которых не требуется выполнять вычисления, так как неизвестное сопротивление R x отсчитывают по шкале прибора. Смонтированные в них магазины сопротивлений позволяют измерять сопротивления от 10 до 100 000 Ом.

При измерении малых сопротивлений обычными мостами сопротивления соединительных проводов и контактных соединений вносят большие погрешности в результаты измерения. Для их устранения применяют двойные мосты постоянного тока (рис. 1.3,б). В этих мостах провода, соединяющие резистор с измеряемым сопротивлением R x и некоторый образцовый резистор с сопротивлением R0 с другими резисторами моста, и их контактные соединения оказываются включенными последовательно с резисторами соответствующих плеч, сопротивление которых устанавливается не менее 10 Ом. Поэтому они практически не влияют на результаты измерений. Провода же, соединяющие резисторы с сопротивлениями R x и R0, входят в цепь питания и не влияют на условия равновесия моста. Поэтому точность измерения малых сопротивлений довольно высокая. Мост выполняют так, чтобы при регулировках его соблюдались следующие условия: R1 = R2 и R3 = R4. В этом случае

R x = R 0 R 1 /R 4 (113)

Двойные мосты позволяют измерить сопротивления от 10 до 0,000001 Ом.

Если мост не уравновешен, то стрелка в гальванометре будет отклоняться от нулевого положения, так как ток измерительной диагонали при неизменных значениях сопротивлений R1, R2, R3 и э. д. с. источника тока будет зависеть только от изменения сопротивления R x . Это позволяет проградуировать шкалу гальванометра в единицах сопротивления R x или каких-либо других единицах (температура, давление и пр.), от которых зависит это сопротивление. Поэтому неуравновешенный мост постоянного тока широко используют в различных устройствах для измерения неэлектрических величин электрическими методами.

Применяют также различные мосты переменного тока, которые дают возможность измерить с большой точностью индуктивности и емкости.

Измерение омметром. Омметр представляет собой миллиамперметр 1 с магнитоэлектрическим измерительным механизмом и включается последовательно с измеряемым сопротивлением R x (рис. 1.4.) и добавочным резистором R Д в цепь постоянного тока. При неизменных э. д. с. источника и сопротивления резистора R Д ток в цепи зависит только от сопротивления R x . Это позволяет отградуировать шкалу прибора непосредственно в омах. Если выходные зажимы прибора 2 и 3 замкнуты накоротко (см. штриховую линию), то ток I в цепи максимален и стрелка прибора отклоняется вправо на наибольший угол; на шкале этому соответствует сопротивление, равное нулю. Если цепь прибора разомкнута, то I = 0 и стрелка находится в начале шкалы; этому положению соответствует сопротивление, равное бесконечности.

Питание прибора осуществляется от сухого гальванического элемента 4, который устанавливается в корпусе прибора. Прибор будет давать правильные показания только в том случае, если источник тока имеет неизменную э. д. с. (такую же, как и при градуировке шкалы прибора). В некоторых омметрах имеются два или несколько пределов измерения, например от 0 до 100 Ом и от 0 до 10 000 Ом. В зависимости от этого резистор с измеряемым сопротивлением R x подключают к различным зажимам.

Измерение больших сопротивлений мегаомметрами. Для измерения сопротивления изоляции чаще всего применяют мегаомметры магнитоэлектрической системы. В качестве измерительного механизма в них использован логометр 2 (рис. 1.5.), показания которого не зависят от напряжения источника тока, питающего измерительные цепи. Катушки 1 и 3 прибора находятся в магнитном поле постоянного магнита и подключены к общему источнику питания 4.

Рис. 1.4.

Рис. 1.5.

Последовательно с одной катушкой включают добавочный резистор R д, в цепь другой катушки -- резистор сопротивлением R x .

В качестве источника тока обычно используют небольшой генератор 4 постоянного тока, называемый индуктором; якорь генератора приводят во вращение рукояткой, соединенной с ним через редуктор. Индукторы имеют значительные напряжения от 250 до 2500 В, благодаря чему мегаомметром можно измерять большие сопротивления.

При взаимодействии протекающих по катушкам токов I1 и I2 с магнитным полем постоянного магнита создаются два противоположно направленных момента М1 и М2, под влиянием которых подвижная часть прибора и стрелка будут занимать определенное положение. Как было показано в § 100, положение подвижной части логометра зависит от отношения I1/I2. Следовательно, при изменении R x будет изменяться угол? отклонения стрелки. Шкала мегаомметра градуируется непосредственно в килоомах или мегаомах (рис. 1.6, а).


Рис. 1.6.

Чтобы измерить сопротивление изоляции между проводами, необходимо отключить их от источника тока (от сети) и присоединить один провод к зажиму Л (линия) (рис. 1.6,б), а другой -- к зажиму 3 (земля). Затем, вращая рукоятку индуктора 1 мегаомметра, определяют по шкале логометра 2 сопротивление изоляции. Имеющийся в приборе переключатель 3 позволяет изменять пределы измерения. Напряжение индуктора, а следовательно, частота вращения его рукоятки теоретически не оказывают влияние на результаты измерений, но практически рекомендуется вращать ее более или менее равномерно.

При измерении сопротивления изоляции между обмотками электрической машины отсоединяют их друг от друга и соединяют одну из них с зажимом Л, а другую с зажимом 3, после чего, вращая рукоятку индуктора, определяют сопротивление изоляции. При измерении сопротивления изоляции обмотки относительно корпуса его соединяют с зажимом 3, а обмотку -- с зажимом Л.

Подразделяют сопротивления электрические условно на малые (не более 1 Ома), средние (от 1 до 10 5 Ом), и,соответственно большие (свыше 10 5 Ом). Измерения их также могут происходить различными способами. При измерении малых – применяется метод вольтметра-амперметра, а также мостовой. Для средних применимы методы вольтметра-амперметра, мостовой (мосты одинарные), компенсационные и методы непосредственной оценки (омметры). Чтоб измерять большие сопротивления применяют , которые реализуют метод непосредственной оценки.

Потому что в данном случае I A ≈I R относительно R и будет выполнено равенство I V «I R . При среднем значении R рекомендована такая схема:

Так как в этом случае U V ≈U R из-за Соответственно применив закон Ома получим:

Из-за наличия внутренних сопротивлений в приборах возникает погрешность, что есть основным недостатком этого метода. Но при измерении малых R сопротивление вольтметра будет равно R V >100R, а для измерения средних R амперметра R A <100R, то в таком случае суммарная погрешность не будет более 1%.

Метод непосредственной оценки

Чтоб реализовать такой метод необходимо применить омметр, схема которого ниже:

Данное устройство состоит из измерительного механизма ИМ (тип механизма магнитоэлектрический), шкала которого градуируется в омах. Также существует источник питания постоянным током U и резистор добавочный R д. К выходным зажимам А и В производят подключения измеряемого сопротивления R X . Соответственно в цепи будет протекать ток:

Где R Д, R И, R Х – добавочный резистор и сопротивления измерительного механизма и соответственно объекта, который подлежит измерению. При этом угол отклонения стрелки прибора будет равен:

Где S 1 – чувствительность токового измерителя.

Если зажимы А и В разомкнуть () , то угол отклонения стрелки прибора будет равен нулю α=0, а если их закоротить (R=0), то угол отклонения будет максимален. Поэтому у омметра шкала обратная – ноль у него справа.

Омметры довольно таки удобны в практическом применении, но они имеют довольно высокую погрешность (класс точности 2,5). Это связано с нестабильностью источника питания и неравномерностью шкалы. Дабы устранить причину неравномерности шкалы в омметрах стали использовать логометрические измерительные механизмы:

Такие приборы получили название мегомметров. Для получения источника питания в мегомметрах используют небольшие генераторы напряжением до 2500 Вольт и приводящиеся в движение вручную. В электронных же мегомметрах в качестве источника могут быть использованы батарейки или же внешний источник питания, подключаемый через специальный блок питания устройства. Мегомметры применяют для измерений больших сопротивлений, таких как сопротивление изоляции проводников. Для измерений свыше 10 9 Ома применяют специальные электронные устройства, которые носят название тераомметров.

Мостовой метод

Устройства, применяемые для реализации такого измерения, именуют измерительными мостами. Четырехплечевой или одинарный мост содержит в себе две диагонали и четыре плеча:

Мост образуют три резистора, значения которых известны – R 2 , R 3 , R 4 и соответственно сопротивление, значение которого необходимо измерить R x . В одну из диагоналей моста необходимо подключить источник питания, для данного случая источник Е 0 подключенный к зажимам a и b, а другую нулевой индикатор НИ (зажимы c и d), который выполняет роль указателя симметричности моста. Когда потенциалы в точках c и d будут равны, то отклонение в НИ протекает ток I НИ = 0 и его отклонение тоже равно нулю. Мост в состоянии равновесия. Будут выполнятся следующие соотношения: I 1 = I 2 , I 3 = I 4 , R x I 1 =R 3 I 3 , R 2 I 2 =R 4 I 4 . Учтя равенство токов и почленно разделив два последних уравнения получим:

Из данного выражения можем выделить искомое сопротивление:

Плечо R 2 именуют плечом сравнения, а плечами отношений R 3 и R 4 соответственно.

Методом одинарного моста измеряют только средние сопротивления. Измерять им малые и большие сопротивления не рекомендуют. Нижний предел измерений моста (единицы Ом) ограничивается влиянием сопротивлений проводов и контактов, которые подключаются в плечо ас последовательно с объектом измерения R х. Верхний предел (10 5 Ом) ограничен шунтирующим действием токов утечки.

Компенсационный метод

Его применяют для получения повышенной точности измерения. Ниже показана схема подобной установки:

В данную схему входит компенсатор постоянного тока, двухпозиционный переключатель (П2 и П1), резистор образцовый R 0 , а также источник питания Е и измеряемый резистор R х. Измеряв падение напряжения на каждом из резисторов при двух разных положениях переключателя определяют – U R 0 =R 0 I и U R Х =R Х I. Из этих выражений можно получить следующую формулу:

При выполнении измерений необходимо ток I поддерживать постоянным и не допускать изменения его значения, для обеспечения точности измерения.

Похожие статьи